login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171822
Triangle T(n,k) = binomial(2*n-k, k)*binomial(n+k, 2*k), read by rows.
2
1, 1, 1, 1, 9, 1, 1, 30, 30, 1, 1, 70, 225, 70, 1, 1, 135, 980, 980, 135, 1, 1, 231, 3150, 7056, 3150, 231, 1, 1, 364, 8316, 34650, 34650, 8316, 364, 1, 1, 540, 19110, 132132, 245025, 132132, 19110, 540, 1, 1, 765, 39600, 420420, 1288287, 1288287, 420420, 39600, 765, 1
OFFSET
0,5
FORMULA
T(n, k) = binomial(2*n-k, k)*binomial(n+k, 2*k) = A054142(n, k)*A085478(n, k).
Sum_{k=0..n} T(n, k) = Hypergeometric 4F3([-n, -n, 1/2 -n, n+1], [1/2, 1, -2*n], 1) = A183160(n). - G. C. Greubel, Feb 22 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 9, 1;
1, 30, 30, 1;
1, 70, 225, 70, 1;
1, 135, 980, 980, 135, 1;
1, 231, 3150, 7056, 3150, 231, 1;
1, 364, 8316, 34650, 34650, 8316, 364, 1;
1, 540, 19110, 132132, 245025, 132132, 19110, 540, 1;
1, 765, 39600, 420420, 1288287, 1288287, 420420, 39600, 765, 1;
1, 1045, 75735, 1166880, 5465460, 9018009, 5465460, 1166880, 75735, 1045, 1;
MATHEMATICA
Table[Binomial[2*n-k, k]*Binomial[n+k, 2*k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(Sage) flatten([[binomial(2*n-k, k)*binomial(n+k, 2*k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 22 2021
(Magma) [Binomial(2*n-k, k)*Binomial(n+k, 2*k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 22 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 19 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 22 2021
STATUS
approved