OFFSET
0,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1325
FORMULA
Sum_{k=0..n} T(n,k) = binomial(2*n+2, n+1) = 2*A001700(n) = A000984(n+1). - G. C. Greubel, Apr 29 2021
EXAMPLE
Triangle begins as:
2;
3, 3;
7, 6, 7;
21, 14, 14, 21;
71, 40, 30, 40, 71;
253, 132, 77, 77, 132, 253;
925, 469, 238, 168, 238, 469, 925;
3433, 1724, 828, 450, 450, 828, 1724, 3433;
12871, 6444, 3048, 1452, 990, 1452, 3048, 6444, 12871;
48621, 24320, 11495, 5225, 2717, 2717, 5225, 11495, 24320, 48621;
184757, 92389, 43824, 19734, 9009, 6006, 9009, 19734, 43824, 92389, 184757;
MATHEMATICA
T[n_, k_] = Binomial[n+k, k] + Binomial[2*n-k, n-k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(Magma)
T:= func< n, k | Binomial(n+k, n) + Binomial(2*n-k, n) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 29 2021
(Sage)
def T(n, k): return binomial(n+k, n) + binomial(2*n-k, n)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 29 2021
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Dec 19 2009
EXTENSIONS
Formula and row sums reference added by the Assoc. Editors of the OEIS, Feb 24 2010
STATUS
approved