login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171824
Triangle T(n,k)= binomial(n + k,n) + binomial(2*n-k,n) read by rows.
1
2, 3, 3, 7, 6, 7, 21, 14, 14, 21, 71, 40, 30, 40, 71, 253, 132, 77, 77, 132, 253, 925, 469, 238, 168, 238, 469, 925, 3433, 1724, 828, 450, 450, 828, 1724, 3433, 12871, 6444, 3048, 1452, 990, 1452, 3048, 6444, 12871, 48621, 24320, 11495, 5225, 2717, 2717, 5225, 11495, 24320, 48621
OFFSET
0,1
LINKS
FORMULA
T(n,k) = A046899(n,k) + A092392(n,k).
Sum_{k=0..n} T(n,k) = binomial(2*n+2, n+1) = 2*A001700(n) = A000984(n+1). - G. C. Greubel, Apr 29 2021
EXAMPLE
Triangle begins as:
2;
3, 3;
7, 6, 7;
21, 14, 14, 21;
71, 40, 30, 40, 71;
253, 132, 77, 77, 132, 253;
925, 469, 238, 168, 238, 469, 925;
3433, 1724, 828, 450, 450, 828, 1724, 3433;
12871, 6444, 3048, 1452, 990, 1452, 3048, 6444, 12871;
48621, 24320, 11495, 5225, 2717, 2717, 5225, 11495, 24320, 48621;
184757, 92389, 43824, 19734, 9009, 6006, 9009, 19734, 43824, 92389, 184757;
MATHEMATICA
T[n_, k_] = Binomial[n+k, k] + Binomial[2*n-k, n-k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(Magma)
T:= func< n, k | Binomial(n+k, n) + Binomial(2*n-k, n) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 29 2021
(Sage)
def T(n, k): return binomial(n+k, n) + binomial(2*n-k, n)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 29 2021
CROSSREFS
Row sums are A000984(n+1).
Sequence in context: A185909 A347533 A193713 * A143444 A108346 A210558
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Dec 19 2009
EXTENSIONS
Formula and row sums reference added by the Assoc. Editors of the OEIS, Feb 24 2010
STATUS
approved