login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k)= binomial(n + k,n) + binomial(2*n-k,n) read by rows.
1

%I #10 Apr 30 2021 02:23:10

%S 2,3,3,7,6,7,21,14,14,21,71,40,30,40,71,253,132,77,77,132,253,925,469,

%T 238,168,238,469,925,3433,1724,828,450,450,828,1724,3433,12871,6444,

%U 3048,1452,990,1452,3048,6444,12871,48621,24320,11495,5225,2717,2717,5225,11495,24320,48621

%N Triangle T(n,k)= binomial(n + k,n) + binomial(2*n-k,n) read by rows.

%H G. C. Greubel, <a href="/A171824/b171824.txt">Table of n, a(n) for n = 0..1325</a>

%F T(n,k) = A046899(n,k) + A092392(n,k).

%F Sum_{k=0..n} T(n,k) = binomial(2*n+2, n+1) = 2*A001700(n) = A000984(n+1). - _G. C. Greubel_, Apr 29 2021

%e Triangle begins as:

%e 2;

%e 3, 3;

%e 7, 6, 7;

%e 21, 14, 14, 21;

%e 71, 40, 30, 40, 71;

%e 253, 132, 77, 77, 132, 253;

%e 925, 469, 238, 168, 238, 469, 925;

%e 3433, 1724, 828, 450, 450, 828, 1724, 3433;

%e 12871, 6444, 3048, 1452, 990, 1452, 3048, 6444, 12871;

%e 48621, 24320, 11495, 5225, 2717, 2717, 5225, 11495, 24320, 48621;

%e 184757, 92389, 43824, 19734, 9009, 6006, 9009, 19734, 43824, 92389, 184757;

%t T[n_, k_] = Binomial[n+k, k] + Binomial[2*n-k, n-k];

%t Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten

%o (Magma)

%o T:= func< n,k | Binomial(n+k,n) + Binomial(2*n-k,n) >;

%o [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Apr 29 2021

%o (Sage)

%o def T(n, k): return binomial(n+k,n) + binomial(2*n-k,n)

%o flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 29 2021

%Y Row sums are A000984(n+1).

%Y Cf. A001700, A007318, A054142, A085478.

%K nonn,tabl,easy

%O 0,1

%A _Roger L. Bagula_, Dec 19 2009

%E Formula and row sums reference added by the Assoc. Editors of the OEIS, Feb 24 2010