login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370233
Triangle read by rows. T(n, k) = (n - k + 1) * binomial(n + k + 1, 2*k)^2 / (n + k + 1).
2
1, 1, 3, 1, 18, 5, 1, 60, 75, 7, 1, 150, 525, 196, 9, 1, 315, 2450, 2352, 405, 11, 1, 588, 8820, 17640, 7425, 726, 13, 1, 1008, 26460, 97020, 81675, 18876, 1183, 15, 1, 1620, 69300, 426888, 637065, 286286, 41405, 1800, 17, 1, 2475, 163350, 1585584, 3864861, 3006003, 828100, 81600, 2601, 19
OFFSET
0,3
FORMULA
T(n, k) = [z^k] P(n, z) where P(n, z) = Sum_{k=0..n} binomial(n + k, 2*k) * Pochhammer(n - k + c, 2*k) * z^k / (2*k)! and c = 2.
T(n, k) = [z^k] hypergeom([-1 - n, -n, 1 + n, 2 + n], [1/2, 1/2, 1], z/16).
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 3;
[2] 1, 18, 5;
[3] 1, 60, 75, 7;
[4] 1, 150, 525, 196, 9;
[5] 1, 315, 2450, 2352, 405, 11;
[6] 1, 588, 8820, 17640, 7425, 726, 13;
[7] 1, 1008, 26460, 97020, 81675, 18876, 1183, 15;
[8] 1, 1620, 69300, 426888, 637065, 286286, 41405, 1800, 17;
MAPLE
T := (n, k) -> (n - k + 1)*binomial(n + k + 1, 2*k)^2/(n + k + 1):
seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
MATHEMATICA
P[n_, z_] := HypergeometricPFQ[{-1 - n, -n, 1 + n, 2 + n}, {1/2, 1/2, 1}, z/16];
Table[CoefficientList[P[n, z], z], {n, 0, 9}] // Flatten
CROSSREFS
Cf. A370232 (c=1), A370234 (row sums).
Sequence in context: A089974 A346039 A143849 * A335689 A105626 A071210
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 13 2024
STATUS
approved