login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182878
Triangle read by rows: T(n,k) is the number of lattice paths L_n of weight n having length k (0 <= k <= n). These are paths that start at (0,0) and end on the horizontal axis and whose steps are of the following four kinds: a (1,0)-step with weight 1, a (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1.
4
1, 0, 1, 0, 1, 1, 0, 0, 4, 1, 0, 0, 1, 9, 1, 0, 0, 0, 9, 16, 1, 0, 0, 0, 1, 36, 25, 1, 0, 0, 0, 0, 16, 100, 36, 1, 0, 0, 0, 0, 1, 100, 225, 49, 1, 0, 0, 0, 0, 0, 25, 400, 441, 64, 1, 0, 0, 0, 0, 0, 1, 225, 1225, 784, 81, 1, 0, 0, 0, 0, 0, 0, 36, 1225, 3136, 1296, 100, 1, 0, 0, 0, 0, 0, 0, 1, 441, 4900, 7056, 2025, 121, 1
OFFSET
0,9
COMMENTS
The weight of a path is the sum of the weights of its steps.
Sum of entries in row n is A051286(n).
Sum_{k=0..n} k*T(n,k) = A182879(n).
REFERENCES
M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177.
FORMULA
T(n,k) = binomial(n,n-k)^2.
G.f. = G(t,z) = ((1-t*z)^2 - 2*t*z^2 - 2*t^2*z^3 + t^2*z^4)^(-1/2).
EXAMPLE
Denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are hhh, hH, Hh, ud, and du, having lengths 3, 2, 2, 2, and 2, respectively.
Triangle starts:
1;
0, 1;
0, 1, 1;
0, 0, 4, 1;
0, 0, 1, 9, 1;
0, 0, 0, 9, 16, 1;
MAPLE
T:=(n, k)->binomial(k, n-k)^2: for n from 0 to 12 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
CROSSREFS
Sequence in context: A036877 A049763 A328290 * A221971 A378008 A297785
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Dec 10 2010
EXTENSIONS
Keyword tabl added by Michel Marcus, Apr 09 2013
STATUS
approved