login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049763 Triangular array T, read by rows: T(n,k) = n^4 mod k, for k = 1..n and n >= 1. 4
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 4, 1, 0, 0, 1, 0, 1, 1, 3, 2, 1, 0, 0, 0, 1, 0, 0, 4, 4, 0, 1, 0, 0, 1, 1, 1, 1, 1, 4, 1, 7, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 6, 1, 0, 0, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,34

LINKS

G. C. Greubel, Rows n = 1..100 of triangle, flattened

EXAMPLE

Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:

  0;

  0, 0;

  0, 1, 0;

  0, 0, 1, 0;

  0, 1, 1, 1, 0;

  0, 0, 0, 0, 1, 0;

  0, 1, 1, 1, 1, 1, 0;

  0, 0, 1, 0, 1, 4, 1, 0;

  0, 1, 0, 1, 1, 3, 2, 1, 0;

  0, 0, 1, 0, 0, 4, 4, 0, 1, 0;

  ...

MAPLE

seq(seq( `mod`(n^4, k), k = 1..n), n = 1..20); # G. C. Greubel, Dec 13 2019

MATHEMATICA

Flatten[Table[PowerMod[n, 4, k], {n, 20}, {k, n}]] (* Harvey P. Dale, Jan 19 2015 *)

PROG

(PARI) T(n, k) = lift(Mod(n, k)^4);

for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 13 2019

(MAGMA) [[Modexp(n, 4, k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Dec 13 2019

(Sage) [[power_mod(n, 4, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 13 2019

(GAP) Flat(List([1..15], n-> List([1..n], k-> PowerMod(n, 4, k) ))); # G. C. Greubel, Dec 13 2019

CROSSREFS

Row sums are in A049764.

Cf. A049759, A049760, A049761, A049762.

Sequence in context: A228623 A036875 A036877 * A328290 A182878 A221971

Adjacent sequences:  A049760 A049761 A049762 * A049764 A049765 A049766

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 02:14 EDT 2020. Contains 336310 sequences. (Running on oeis4.)