login
A221971
G.f.: A(x,y) = Sum_{n>=0} n! * x^n*y^n * Product_{k=1..n} (1 + k*x) / (1 + k*x*y + k^2*x^2*y).
2
1, 0, 1, 0, 1, 1, 0, 0, 4, 1, 0, 0, 3, 11, 1, 0, 0, 0, 27, 26, 1, 0, 0, 0, 17, 148, 57, 1, 0, 0, 0, 0, 278, 646, 120, 1, 0, 0, 0, 0, 155, 2590, 2481, 247, 1, 0, 0, 0, 0, 0, 4073, 18304, 8805, 502, 1, 0, 0, 0, 0, 0, 2073, 58427, 109699, 29682, 1013, 1, 0, 0, 0
OFFSET
0,9
LINKS
FORMULA
Row sums equal A208237.
Central terms equal A110501, the Genocchi numbers of first kind (unsigned).
Columns sums equal A005439, the Genocchi numbers of second kind.
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 0, 4, 1;
0, 0, 3, 11, 1;
0, 0, 0, 27, 26, 1;
0, 0, 0, 17, 148, 57, 1;
0, 0, 0, 0, 278, 646, 120, 1;
0, 0, 0, 0, 155, 2590, 2481, 247, 1;
0, 0, 0, 0, 0, 4073, 18304, 8805, 502, 1;
0, 0, 0, 0, 0, 2073, 58427, 109699, 29682, 1013, 1;
0, 0, 0, 0, 0, 0, 80712, 614819, 590254, 96648, 2036, 1;
0, 0, 0, 0, 0, 0, 38227, 1665829, 5340996, 2948040, 307255, 4083, 1; ...
PROG
(PARI) {T(n, k)=polcoeff(polcoeff(sum(m=0, n, m!*x^m*y^m*prod(k=1, m, (1+k*x)/(1+k*x*y+k^2*x^2*y +x*O(x^n)))), n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A208237 (row sums), A110501 (central terms), A005439 (column sums), A136126.
Sequence in context: A049763 A328290 A182878 * A378008 A297785 A126217
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 01 2013
STATUS
approved