login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221972
G.f.: Sum_{n>=0} n! * x^n * Product_{k=1..n} (2*k-1) / (1 + k*(2*k-1)*x).
3
1, 1, 5, 49, 797, 19417, 661829, 30067105, 1755847661, 128153307433, 11430887275733, 1223433282301681, 154741998546660605, 22833118232808363769, 3887374029443206242917, 756359660427618330221377, 166781979021653656537782029, 41372815623877107580771950025
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k, 0<=k<=n} A211183(n,k)*4^(n-k). - Philippe Deléham, Feb 03 2013
G.f.: G(0) where G(k) = 1 + x*(2*k+1)*(4*k+1)/( 1 + x + 6*x*k + 8*x*k^2 - 2*x*(k+1)*(4*k+3)*(1 + x + 6*x*k + 8*x*k^2)/(2*x*(k+1)*(4*k+3) + (1 + 6*x + 14*x*k + 8*x*k^2)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 11 2013
a(n) ~ 2^(3*n+9/2) * n^(2*n+2) / (exp(2*n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, Nov 02 2014
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 49*x^3 + 797*x^4 + 19417*x^5 + 661829*x^6 +...
where
A(x) = 1 + x/(1+x) + 2!*1*3*x^2/((1+x)*(1+2*3*x)) + 3!*1*3*5*x^3/((1+x)*(1+2*3*x)*(1+3*5*x)) + 4!*1*3*5*7*x^4/((1+x)*(1+2*3*x)*(1+3*5*x)*(1+4*7*x)) +...
PROG
(PARI) {a(n)=polcoeff( sum(m=0, n, m!*x^m*prod(k=1, m, (2*k-1)/(1+k*(2*k-1)*x +x*O(x^n))) ), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A062995 A293847 A104600 * A002111 A305114 A001819
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 01 2013
STATUS
approved