login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104600
Number of matrices of any size up to column permutations, with n different elements, zero elsewhere and with no zero row or column.
4
1, 1, 5, 49, 795, 18881, 611193, 25704253, 1356235163, 87419692453, 6741175388313, 611464105166993, 64336296019640307, 7760748741918246361, 1062626712168331953737, 163738827988386433177093, 28181351778805732986601035, 5382075236937341624838444077
OFFSET
0,3
FORMULA
(1/(2e)) * Sum{r, s>=0, (rs)_n / [2^r s! ] }, where (m)_n is the falling factorial m * (m-1) * ... * (m-n+1).
E.g.f.: exp(-1)*sum(exp((1+x)^n)/2^(n+1),n=0..infinity). - Vladeta Jovovic, Sep 24 2006
a(n) = Sum_{k=0..n} Stirling1(n,k)*A000670(k)*A000110(k). - Vladeta Jovovic, Sep 27 2006
exp(-1)*sum(1/(2-(1+x)^n)/n!,n=0..infinity) is also e.g.f. - Vladeta Jovovic, Oct 09 2006
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(k!/(k-j)!
*binomial(n-1, j-1)*b(n-j, k), j=1..min(k, n)))
end:
a:= n-> add(add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):
seq(a(n), n=0..21); # Alois P. Heinz, Sep 03 2019
MATHEMATICA
Table[Sum[StirlingS1[n, k] * Sum[StirlingS2[k, j]*j!, {j, 0, k}] * BellB[k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 03 2015 *)
Table[1/(2*E) * Sum[Sum[Product[r*s-k, {k, 0, n-1}] / (2^r s!), {r, 0, Infinity}], {s, 0, Infinity}], {n, 0, 10}] (* Vaclav Kotesovec, May 03 2015 *)
CROSSREFS
Row sums of A323128.
Sequence in context: A290755 A062995 A293847 * A221972 A002111 A305114
KEYWORD
nonn
AUTHOR
Ralf Stephan, Mar 27 2005
EXTENSIONS
Corrected by Vladeta Jovovic, Sep 08 2006
Offset corrected by Vaclav Kotesovec, May 03 2015
STATUS
approved