OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..274
M. Maia and M. Mendez, On the arithmetic product of combinatorial species
FORMULA
(1/(2e)) * Sum{r, s>=0, (rs)_n / [2^r s! ] }, where (m)_n is the falling factorial m * (m-1) * ... * (m-n+1).
E.g.f.: exp(-1)*sum(exp((1+x)^n)/2^(n+1),n=0..infinity). - Vladeta Jovovic, Sep 24 2006
exp(-1)*sum(1/(2-(1+x)^n)/n!,n=0..infinity) is also e.g.f. - Vladeta Jovovic, Oct 09 2006
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(k!/(k-j)!
*binomial(n-1, j-1)*b(n-j, k), j=1..min(k, n)))
end:
a:= n-> add(add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):
seq(a(n), n=0..21); # Alois P. Heinz, Sep 03 2019
MATHEMATICA
Table[Sum[StirlingS1[n, k] * Sum[StirlingS2[k, j]*j!, {j, 0, k}] * BellB[k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 03 2015 *)
Table[1/(2*E) * Sum[Sum[Product[r*s-k, {k, 0, n-1}] / (2^r s!), {r, 0, Infinity}], {s, 0, Infinity}], {n, 0, 10}] (* Vaclav Kotesovec, May 03 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Mar 27 2005
EXTENSIONS
Corrected by Vladeta Jovovic, Sep 08 2006
Offset corrected by Vaclav Kotesovec, May 03 2015
STATUS
approved