This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104597 Triangle T read by rows: inverse of Motzkin triangle A097609. 13
 1, 0, 1, -1, 0, 1, -1, -2, 0, 1, 0, -2, -3, 0, 1, 1, 1, -3, -4, 0, 1, 1, 4, 3, -4, -5, 0, 1, 0, 3, 9, 6, -5, -6, 0, 1, -1, -2, 5, 16, 10, -6, -7, 0, 1, -1, -6, -9, 6, 25, 15, -7, -8, 0, 1, 0, -4, -18, -24, 5, 36, 21, -8, -9, 0, 1, 1, 3, -7, -39, -50, 1, 49, 28, -9, -10, 0, 1, 1, 8 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Riordan array ((1-x)/(1-x+x^2),x(1-x)/(1-x+x^2)). - Paul Barry, Jun 21 2008 LINKS D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees FORMULA T(n,m) = sum(j=0..m, binomial(m,j)*sum(k=0..n, binomial(k,n-k)*(-1)^(n-k)*binomial(k+j-1,j-1))*(-1)^(m-j)). - Vladimir Kruchinin, Apr 08 2011 T(n,m) = sum(k=ceiling((n-m-1)/2)..n-m, binomial(k+m,m)*binomial(k+1,n-k-m)*(-1)^(n-k-m)). - Vladimir Kruchinin, Dec 17 2011 T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Feb 20 2013 T(n+5,n) = (n+1)^2. - Philippe Deléham, Feb 20 2013 From Tom Copeland, Nov 01 and 04 2014: (Start) O.g.f.: G(x,t) = Pinv[Cinv(x),t+1] = Cinv(x) / [1 - (t+1)Cinv(x)] = x*(1-x) / [1-(t+1)x(1-x)] = x + t * x^2 + (-1 + t^2) * x^3 + ..., where Cinv(x)= x * (1-x) is the inverse of C(x) = [1-sqrt(1-4*x)]/2, an o.g.f. for the Catalan numbers A000108 and Pinv(x,t) = -P(-x,t) = x/(1-t*x) is the inverse of P(x,t) = x/(1+x*t). Ginv(x,t)= C[P[x,t+1]]= C[x/(1+(t+1)x)] = {1-sqrt[1-4*x/(1+(t+1)x)]}/2. The inverse in x of G(x,t) with t replaced by -t is the o.g.f. of A091867, and G(x,t-1) is a signed version of the (mirrored) Fibonacci polynomials A030528. (End) EXAMPLE 1 0,1 -1,0,1 -1,-2,0,1 0,-2,-3,0,1 1,1,-3,-4,0,1 1,4,3,-4,-5,0,1 0,3,9,6,-5,-6,0,1 -1,-2,5,16,10,-6,-7,0,1 -1,-6,-9,6,25,15,-7,-8,0,1 PROG (Maxima) T(n, m):=sum(binomial(m, j)*sum(binomial(k, n-k)*(-1)^(n-k)*binomial(k+j-1, j-1), k, 0, n)*(-1)^(m-j), j, 0, m); \\ Vladimir Kruchinin, Apr 08 2011 CROSSREFS Row sums are A009116 with different signs. Row sums are A146559(n). - Philippe Deléham, Feb 20 2013 Cf. A091867, A030528, A000108. Sequence in context: A129447 A125079 A235987 * A182936 A072662 A030010 Adjacent sequences:  A104594 A104595 A104596 * A104598 A104599 A104600 KEYWORD sign,tabl AUTHOR Ralf Stephan, Mar 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 16:55 EST 2018. Contains 318098 sequences. (Running on oeis4.)