The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125079 Excess of number of divisors of 2n+1 of form 12k+1, 12k+5 over those of form 12k+7, 12k+11. 11
 1, 1, 2, 0, 1, 0, 2, 2, 2, 0, 0, 0, 3, 1, 2, 0, 0, 0, 2, 2, 2, 0, 2, 0, 1, 2, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 3, 0, 0, 1, 0, 4, 2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 2, 0, 1, 2, 4, 0, 0, 0, 0, 2, 2, 0, 0, 0, 4, 1, 2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 2, 2, 4, 0, 0, 0, 2, 4, 2, 0, 0, 0, 4, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). REFERENCES N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.56). LINKS Antti Karttunen, Table of n, a(n) for n = 0..10000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-1/2) * eta(q^3)^3 *eta(q^4) * eta(q^12) / (eta(q) * eta(q^6)^2) in powers of q. Expansion of phi(-q^3) * psi(-q^3) / (chi(-q) * chi(-q^2)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions. Euler transform of period 12 sequence [ 1, 1, -2, 0, 1, 0, 1, 0, -2, 1, 1, -2, ...]. a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 4), b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4). G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A138745. a(6*n + 3) = a(6*n + 5) = 0. a(6*n) = A002175(n). a(6*n + 1) = a(2*n) = A008441(n). a(6*n + 2) = 2 * A121444(n). a(n) = A035154(2*n + 1). EXAMPLE 1 + x + 2*x^2 + x^4 + 2*x^6 + 2*x^7 + 2*x^8 + 3*x^12 + x^13 + 2*x^14 + ... q + q^3 + 2*q^5 + q^9 + 2*q^13 + 2*q^15 + 2*q^17 + 3*q^25 + q^27 + 2*q^29 + ... MATHEMATICA a[ n_] := If[ n < 0, 0, With[{m = 2 n + 1}, Sum[ KroneckerSymbol[ -36, d], { d, Divisors[ m]}]]] PROG (PARI) {a(n) = if( n<0, 0, n = 2*n+1; sumdiv( n, d, kronecker( -36, d)))} (PARI) {a(n) = if( n<0, 0, n = 2*n+1; sumdiv( n, d, kronecker( 6, d) * (-1)^(d\12)))} (PARI) {a(n) = if( n<0, 0, if( n%6==1, n\=3, 1); sumdiv( 2*n + 1, d, kronecker( -4, d)) )} (PARI) {a(n) = local(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, if( p==3, 1, if( p%4==1, e+1, !(e%2)))))))} (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^6 + A)^2), n))} CROSSREFS Cf. A002175, A008441, A035154, A121444. Sequence in context: A139353 A029397 A129447 * A329027 A235987 A104597 Adjacent sequences:  A125076 A125077 A125078 * A125080 A125081 A125082 KEYWORD nonn AUTHOR Michael Somos, Nov 18 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 23:10 EDT 2021. Contains 343599 sequences. (Running on oeis4.)