login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125079
Excess of number of divisors of 2n+1 of form 12k+1, 12k+5 over those of form 12k+7, 12k+11.
11
1, 1, 2, 0, 1, 0, 2, 2, 2, 0, 0, 0, 3, 1, 2, 0, 0, 0, 2, 2, 2, 0, 2, 0, 1, 2, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 3, 0, 0, 1, 0, 4, 2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 2, 0, 1, 2, 4, 0, 0, 0, 0, 2, 2, 0, 0, 0, 4, 1, 2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 2, 2, 4, 0, 0, 0, 2, 4, 2, 0, 0, 0, 4, 0, 0
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.56).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of q^(-1/2) * eta(q^3)^3 *eta(q^4) * eta(q^12) / (eta(q) * eta(q^6)^2) in powers of q.
Expansion of phi(-q^3) * psi(-q^3) / (chi(-q) * chi(-q^2)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Euler transform of period 12 sequence [ 1, 1, -2, 0, 1, 0, 1, 0, -2, 1, 1, -2, ...].
a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 4), b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A138745.
a(6*n + 3) = a(6*n + 5) = 0. a(6*n) = A002175(n). a(6*n + 1) = a(2*n) = A008441(n). a(6*n + 2) = 2 * A121444(n). a(n) = A035154(2*n + 1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/3 = 1.0471975... (A019670). - Amiram Eldar, Dec 28 2023
a(6*n + 3) = a(6*n + 5) = 0. a(6*n + 1) = A008441(n). a(6*n + k) = A008441(3*n + k/2) for k=0,2,4. - Seiichi Manyama Oct 11 2024
EXAMPLE
1 + x + 2*x^2 + x^4 + 2*x^6 + 2*x^7 + 2*x^8 + 3*x^12 + x^13 + 2*x^14 + ...
q + q^3 + 2*q^5 + q^9 + 2*q^13 + 2*q^15 + 2*q^17 + 3*q^25 + q^27 + 2*q^29 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[{m = 2 n + 1}, Sum[ KroneckerSymbol[ -36, d], { d, Divisors[ m]}]]]
PROG
(PARI) {a(n) = if( n<0, 0, n = 2*n+1; sumdiv( n, d, kronecker( -36, d)))}
(PARI) {a(n) = if( n<0, 0, n = 2*n+1; sumdiv( n, d, kronecker( 6, d) * (-1)^(d\12)))}
(PARI) {a(n) = if( n<0, 0, if( n%6==1, n\=3, 1); sumdiv( 2*n + 1, d, kronecker( -4, d)) )}
(PARI) {a(n) = local(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, if( p==3, 1, if( p%4==1, e+1, !(e%2)))))))}
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^6 + A)^2), n))}
(PARI) a008441(n) = sumdiv(4*n+1, d, (-1)^(d\2));
a(n) = if(n%2==0, a008441(n/2), if(n%6==1, a008441((n-1)/6))); \\ Seiichi Manyama, Oct 11 2024
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Nov 18 2006
STATUS
approved