login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125082
a(n) = n^4 - n^3 - n^2 - n - 1.
6
-1, -3, 1, 41, 171, 469, 1037, 2001, 3511, 5741, 8889, 13177, 18851, 26181, 35461, 47009, 61167, 78301, 98801, 123081, 151579, 184757, 223101, 267121, 317351, 374349, 438697, 511001, 591891, 682021, 782069, 892737, 1014751, 1148861, 1295841, 1456489, 1631627, 1822101, 2028781, 2252561, 2494359
OFFSET
0,2
COMMENTS
For odd n > 1, a(n) * (n-1) / 2 represents the first integer in a sum of (2 * n^4) consecutive integers that equals n^9. - Patrick J. McNab, Dec 25 2016
FORMULA
O.g.f.: -60/(-1+x)^3-66/(-1+x)^4-1/(-1+x)-24/(-1+x)^5-20/(-1+x)^2. - R. J. Mathar, Feb 26 2008
a(0)=-1, a(1)=-3, a(2)=1, a(3)=41, a(4)=171, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Dec 30 2011
MATHEMATICA
Table[n^4 - n^3 - n^2 - n - 1, {n, 0, 41}]
LinearRecurrence[{5, -10, 10, -5, 1}, {-1, -3, 1, 41, 171}, 40] (* Harvey P. Dale, Dec 30 2011 *)
PROG
(Magma) [n^4-n^3-n^2-n-1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=n^4-n^3-n^2-n-1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A083074.
Sequence in context: A271296 A270132 A050817 * A307803 A356819 A362166
KEYWORD
sign,easy
AUTHOR
Artur Jasinski, Nov 19 2006
STATUS
approved