OFFSET
0,2
COMMENTS
For odd n > 1, a(n) * (n-1) / 2 represents the first integer in a sum of (2 * n^4) consecutive integers that equals n^9. - Patrick J. McNab, Dec 25 2016
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..660
Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).
FORMULA
O.g.f.: -60/(-1+x)^3-66/(-1+x)^4-1/(-1+x)-24/(-1+x)^5-20/(-1+x)^2. - R. J. Mathar, Feb 26 2008
a(0)=-1, a(1)=-3, a(2)=1, a(3)=41, a(4)=171, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Dec 30 2011
MATHEMATICA
Table[n^4 - n^3 - n^2 - n - 1, {n, 0, 41}]
LinearRecurrence[{5, -10, 10, -5, 1}, {-1, -3, 1, 41, 171}, 40] (* Harvey P. Dale, Dec 30 2011 *)
PROG
(Magma) [n^4-n^3-n^2-n-1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=n^4-n^3-n^2-n-1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Artur Jasinski, Nov 19 2006
STATUS
approved