login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362166
Expansion of e.g.f. exp(-x * (1-3*x)^(1/3)).
1
1, -1, 3, -1, 41, 299, 4531, 74507, 1474481, 33540119, 864507491, 24891022199, 791755864153, 27571976573699, 1043247441846611, 42615848603499779, 1869129393654945761, 87605345727468933167, 4369604246576366377411, 231091472431638655755119
OFFSET
0,3
FORMULA
a(n) = (-1)^n * n! * Sum_{k=0..n} 3^k * binomial((n-k)/3,k)/(n-k)!.
D-finite with recurrence +(-9*n+11)*a(n) +2*(27*n^2-121*n+72)*a(n-1) +3*(-27*n^3+304*n^2-1053*n+1056)*a(n-2) +(-612*n^3+6984*n^2-23677*n+21227) *a(n-3) +4*(27*n-23)*(n-3)*a(n-4) -48*(9*n-10) *(n-3)*(n-4) *a(n-5) +64*(n-5)*(n-4)*(9*n^2-62*n+78)*a(n-6) +256*(n-5) *(n-6)*(17*n-24)*(n-4)*a(n-7)=0. - R. J. Mathar, Dec 04 2023
MAPLE
A362166 := proc(n)
(-1)^n*n!*add(3^k * binomial((n-k)/3, k)/(n-k)!, k=0..n) ;
end proc:
seq(A362166(n), n=0..70) ; # R. J. Mathar, Dec 04 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-x*(1-3*x)^(1/3))))
CROSSREFS
Sequence in context: A125082 A307803 A356819 * A136517 A366479 A104097
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Apr 10 2023
STATUS
approved