login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307803
Inverse binomial transform of least common multiple sequence.
1
1, -1, 3, 1, 41, 171, 799, 2633, 7881, 24391, 99611, 461649, 2252953, 10773491, 46602711, 176413201, 596116769, 1899975183, 6302881171, 24136694081, 105765310281, 476455493179, 2033813426063, 8019234229401, 29410337173561, 102444237073751, 347418130583499
OFFSET
0,3
LINKS
Jackson Earles, Aaron Li, Adam Nelson, Marlo Terr, Sarah Arpin, and Ilia Mishev Binomial Transforms of Sequences, CU Boulder Experimental Math Lab, Spring 2019.
FORMULA
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*A003418(k+1).
Formula for values modulo 10: (Proof by considering the formula modulo 10)
a(n) (mod 10) = 1, if n = 0, 3, 4 (mod 5),
a(n) (mod 10) = 9, if n = 1 (mod 5),
a(n) (mod 10) = 3, if n = 2 (mod 5).
EXAMPLE
For n = 3, a(3) = binomial(3,0)*1 - binomial(3,1)*2 + binomial(3,2)*6 - binomial(3,3)*12 = 1.
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, ilcm(n, b(n-1))) end:
a:= n-> add(b(i+1)*binomial(n, i)*(-1)^i, i=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 29 2019
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, LCM[n, b[n - 1]]];
a[n_] := Sum[b[i + 1] Binomial[n, i] (-1)^i, {i, 0, n}];
a /@ Range[0, 30] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
PROG
(Sage)
def SIbinomial_transform(N, seq):
BT = [seq[0]]
k = 1
while k< N:
next = 0
j = 0
while j <=k:
next = next + (((-1)^j)*(binomial(k, j))*seq[j])
j = j+1
BT.append(next)
k = k+1
return BT
LCMSeq = []
for k in range(1, 26):
LCMSeq.append(lcm(range(1, k+1)))
SIbinomial_transform(25, LCMSeq)
(PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*lcm(vector(k+1, i, i))); \\ Michel Marcus, Apr 30 2019
CROSSREFS
Inverse binomial transform of A003418 (shifted).
Sequence in context: A270132 A050817 A125082 * A356819 A362166 A136517
KEYWORD
sign
AUTHOR
Sarah Arpin, Apr 29 2019
STATUS
approved