login
A329027
The least missing digit in the primorial base expansion of n. Only significant digits are considered, as the leading zeros are ignored.
4
0, 2, 0, 1, 0, 2, 2, 2, 0, 3, 0, 1, 3, 3, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 2, 2, 2, 2, 3, 3, 2, 2, 2, 0, 3, 0, 3, 3, 3, 0, 3, 0, 2, 2, 2, 0, 4, 0, 2, 2, 2, 0, 3, 0, 1, 3, 3, 3, 1, 3, 3, 3, 3, 0, 3, 0, 1, 3, 3, 0, 1, 0, 1, 4, 4, 0, 1, 0, 1, 3, 3, 0, 1, 0, 1, 2, 2, 2, 1, 4, 2, 2, 2, 0, 4, 0, 1, 4, 4, 0
OFFSET
1,2
COMMENTS
For n = 0 the value is ambiguous, thus the sequence starts from n=1.
EXAMPLE
19 in primorial base (A049345) is written as "301". The least missing digit is 2, thus a(19) = 2.
MATHEMATICA
a[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; Min[Complement[Range[0, Max[s]+1], s]]]; Array[a, 100] (* Amiram Eldar, Mar 13 2024 *)
PROG
(PARI) A329027(n) = { my(m=Map(), p=2); while(n, mapput(m, (n%p), 1); n = n\p; p = nextprime(1+p)); for(k=0, oo, if(!mapisdefined(m, k), return(k))); };
CROSSREFS
Cf. A328574 (after its initial term, gives the positions of zeros in this sequence), A328840 (after its initial term, gives the positions of ones in this sequence).
Sequence in context: A029397 A129447 A125079 * A235987 A104597 A182936
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Nov 03 2019
STATUS
approved