OFFSET
1,3
COMMENTS
After the initial zero, numbers n for which A276086(n) produces an even number with no gaps in its prime factorization.
Numbers n such that A276086(n) is in A055932; numbers for which A328475(n) is equal to A328572(n) = A003557(A276086(n)).
The number of positive terms below prime(m)# = A002110(m) is Sum_{k=1..m} A005867(k). - Amiram Eldar, Feb 16 2021
LINKS
MATHEMATICA
max = 4; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; Join[{0}, Select[Range[nmax], FreeQ[IntegerDigits[#, MixedRadix[bases]], 0] &]] (* Amiram Eldar, Feb 16 2021 *)
PROG
(PARI)
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
isA055932(n) = { my(f=factor(n)[, 1]~); f==primes(#f); }; \\ From A055932
isA328574(n) = isA055932(A276086(n));
(PARI)
A328475(n) = { my(m=1, p=2, y=1); while(n, if(n%p, m *= p^((n%p)-y), y=0); n = n\p; p = nextprime(1+p)); (m); };
A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); };
CROSSREFS
Cf. A227157 for analogous sequence.
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Oct 20 2019
EXTENSIONS
Primary definition changed, the old definition moved to comment section by Antti Karttunen, Nov 03 2019
STATUS
approved