login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084060 a(n) = 1/2 + (1-6*n)*(-1)^n/2. 1
1, 3, -5, 9, -11, 15, -17, 21, -23, 27, -29, 33, -35, 39, -41, 45, -47, 51, -53, 57, -59, 63, -65, 69, -71, 75, -77, 81, -83, 87, -89, 93, -95, 99, -101, 105, -107, 111, -113, 117, -119, 123, -125, 129, -131, 135, -137, 141, -143, 147, -149, 153, -155, 159, -161, 165, -167, 171, -173, 177, -179 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

abs(a(n+1)) = A047270(n).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (-1,1,1).

FORMULA

Unsigned version is sum of alternate terms of A032766 (numbers congruent to {0,1,3} mod 4): (1, 3, 4, 6, 7, 9, 10, 12,...) such that a(n) = A032766(n-1) + A032766(n+1). - Gary W. Adamson, Sep 13 2007

G.f.: (1 + 4*x - 3*x^2 )/( (1-x)*(1+x)^2 ). - R. J. Mathar, Oct 25 2011

E.g.f.: (1+3*x)*cosh(x) - 3*x*sinh(x). - G. C. Greubel, Jan 03 2020

MAPLE

seq( (1 + (1-6*n)*(-1)^n)/2, n=0..60); # G. C. Greubel, Jan 03 2020

MATHEMATICA

Table[(1 + (1-6*n)*(-1)^n)/2, {n, 0, 60}] (* G. C. Greubel, Jan 03 2020 *)

PROG

(MAGMA) [1/2+(1-6*n)*(-1)^n/2: n in [0..60]]; // Vincenzo Librandi, Oct 26 2011

(PARI) vector(61, n, (1 - (7-6*n)*(-1)^n)/2) \\ G. C. Greubel, Jan 03 2020

(Sage) [(1 + (1-6*n)*(-1)^n)/2 for n in (0..60)] # G. C. Greubel, Jan 03 2020

(GAP) List([0..60], n-> (1 + (1-6*n)*(-1)^n)/2) # G. C. Greubel, Jan 03 2020

CROSSREFS

Cf. A032766, A084056.

Sequence in context: A191207 A285519 A047270 * A328574 A227157 A024896

Adjacent sequences:  A084057 A084058 A084059 * A084061 A084062 A084063

KEYWORD

easy,sign

AUTHOR

Paul Barry, May 11 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 09:01 EST 2020. Contains 331293 sequences. (Running on oeis4.)