login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084060
a(n) = 1/2 + (1-6*n)*(-1)^n/2.
1
1, 3, -5, 9, -11, 15, -17, 21, -23, 27, -29, 33, -35, 39, -41, 45, -47, 51, -53, 57, -59, 63, -65, 69, -71, 75, -77, 81, -83, 87, -89, 93, -95, 99, -101, 105, -107, 111, -113, 117, -119, 123, -125, 129, -131, 135, -137, 141, -143, 147, -149, 153, -155, 159, -161, 165, -167, 171, -173, 177, -179
OFFSET
0,2
COMMENTS
abs(a(n+1)) = A047270(n).
FORMULA
Unsigned version is sum of alternate terms of A032766 (numbers congruent to {0,1,3} mod 4): (1, 3, 4, 6, 7, 9, 10, 12, ...) such that a(n) = A032766(n-1) + A032766(n+1). - Gary W. Adamson, Sep 13 2007
G.f.: (1 + 4*x - 3*x^2 )/( (1-x)*(1+x)^2 ). - R. J. Mathar, Oct 25 2011
E.g.f.: (1+3*x)*cosh(x) - 3*x*sinh(x). - G. C. Greubel, Jan 03 2020
MAPLE
seq( (1 + (1-6*n)*(-1)^n)/2, n=0..60); # G. C. Greubel, Jan 03 2020
MATHEMATICA
Table[(1 + (1-6*n)*(-1)^n)/2, {n, 0, 60}] (* G. C. Greubel, Jan 03 2020 *)
LinearRecurrence[{-1, 1, 1}, {1, 3, -5}, 100] (* Harvey P. Dale, Mar 05 2023 *)
PROG
(Magma) [1/2+(1-6*n)*(-1)^n/2: n in [0..60]]; // Vincenzo Librandi, Oct 26 2011
(PARI) vector(61, n, (1 - (7-6*n)*(-1)^n)/2) \\ G. C. Greubel, Jan 03 2020
(Sage) [(1 + (1-6*n)*(-1)^n)/2 for n in (0..60)] # G. C. Greubel, Jan 03 2020
(GAP) List([0..60], n-> (1 + (1-6*n)*(-1)^n)/2) # G. C. Greubel, Jan 03 2020
CROSSREFS
Sequence in context: A191207 A285519 A047270 * A328574 A227157 A024896
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 11 2003
STATUS
approved