login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084063
First subdiagonal of number array A084061.
7
1, 1, 7, 63, 761, 11525, 209539, 4440527, 107374753, 2915352729, 87771145551, 2900744369039, 104369641697881, 4060189444664093, 169777979925475531, 7592652139022106975, 361563242499379729537, 18263719440778358953457
OFFSET
0,3
LINKS
FORMULA
a(n) = ((n - sqrt(n+1))^n + (n + sqrt(n+1))^n)/2.
MAPLE
seq( round(((n-sqrt(n+1))^n + (n+sqrt(n+1))^n)/2), n=0..20); # G. C. Greubel, Jan 09 2020
MATHEMATICA
Table[Round[((n+Sqrt[n+1])^n + (n-Sqrt[n+1])^n)/2], {n, 0, 20}] (* G. C. Greubel, Jan 09 2020 *)
PROG
(PARI) vector(21, n, round(((n-1-sqrt(n))^(n-1) + (n-1+sqrt(n))^(n-1))/2) ) \\ G. C. Greubel, Jan 09 2020
(Magma) [Round(((n-Sqrt(n+1))^n + (n+Sqrt(n+1))^n)/2): n in [0..20]]; // G. C. Greubel, Jan 09 2020
(Sage) [round(((n-sqrt(n+1))^n + (n+sqrt(n+1))^n)/2) for n in (0..20)] # G. C. Greubel, Jan 09 2020
(GAP) List([0..20], n-> ((n-Sqrt(n+1))^n + (n+Sqrt(n+1))^n)/2); # G. C. Greubel, Jan 09 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 11 2003
STATUS
approved