login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 1/2 + (1-6*n)*(-1)^n/2.
1

%I #22 Mar 05 2023 15:22:05

%S 1,3,-5,9,-11,15,-17,21,-23,27,-29,33,-35,39,-41,45,-47,51,-53,57,-59,

%T 63,-65,69,-71,75,-77,81,-83,87,-89,93,-95,99,-101,105,-107,111,-113,

%U 117,-119,123,-125,129,-131,135,-137,141,-143,147,-149,153,-155,159,-161,165,-167,171,-173,177,-179

%N a(n) = 1/2 + (1-6*n)*(-1)^n/2.

%C abs(a(n+1)) = A047270(n).

%H Vincenzo Librandi, <a href="/A084060/b084060.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,1,1).

%F Unsigned version is sum of alternate terms of A032766 (numbers congruent to {0,1,3} mod 4): (1, 3, 4, 6, 7, 9, 10, 12, ...) such that a(n) = A032766(n-1) + A032766(n+1). - _Gary W. Adamson_, Sep 13 2007

%F G.f.: (1 + 4*x - 3*x^2 )/( (1-x)*(1+x)^2 ). - _R. J. Mathar_, Oct 25 2011

%F E.g.f.: (1+3*x)*cosh(x) - 3*x*sinh(x). - _G. C. Greubel_, Jan 03 2020

%p seq( (1 + (1-6*n)*(-1)^n)/2, n=0..60); # _G. C. Greubel_, Jan 03 2020

%t Table[(1 + (1-6*n)*(-1)^n)/2, {n,0,60}] (* _G. C. Greubel_, Jan 03 2020 *)

%t LinearRecurrence[{-1,1,1},{1,3,-5},100] (* _Harvey P. Dale_, Mar 05 2023 *)

%o (Magma) [1/2+(1-6*n)*(-1)^n/2: n in [0..60]]; // _Vincenzo Librandi_, Oct 26 2011

%o (PARI) vector(61, n, (1 - (7-6*n)*(-1)^n)/2) \\ _G. C. Greubel_, Jan 03 2020

%o (Sage) [(1 + (1-6*n)*(-1)^n)/2 for n in (0..60)] # _G. C. Greubel_, Jan 03 2020

%o (GAP) List([0..60], n-> (1 + (1-6*n)*(-1)^n)/2) # _G. C. Greubel_, Jan 03 2020

%Y Cf. A032766, A084056.

%K easy,sign

%O 0,2

%A _Paul Barry_, May 11 2003