OFFSET
0,2
COMMENTS
2*A084059 is the Lucas sequence V(4,-2). - Bruno Berselli, Jan 09 2013
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,2).
FORMULA
E.g.f.: exp(2*x)*cosh(sqrt(6)*x).
a(n) = ((2+sqrt(6))^n + (2-sqrt(6))^n)/2. - Paul Barry, May 13 2003
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*2^(n-k)*3^k. - Paul Barry, Jan 15 2007
G.f.: (1-2*x)/(1-4*x-2*x^2). - Philippe Deléham, Sep 07 2009
a(n) = Sum_{k=0..n} A201730(n,k)*5^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k-2)/(x*(3*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = (-i)^n*2^(n/2)*ChebyshevT(n, i*sqrt(2)) = 2^((n-2)/2)*Lucas(n, 2*sqrt(2)). - G. C. Greubel, Jan 03 2020
MAPLE
seq(simplify(2^(n/2)*(-I)^n*ChebyshevT(n, I*sqrt(2))), n = 0..30); # G. C. Greubel, Jan 03 2020
MATHEMATICA
Table[(-I)^n*2^(n/2)*ChebyshevT[n, I*Sqrt[2]], {n, 0, 30}] (* G. C. Greubel, Jan 03 2020 *)
PROG
(Sage) [lucas_number2(n, 4, -2)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
(Magma) [n le 2 select n else 4*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011
(PARI) Vec((1-2*x)/(1-4*x-2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016
(PARI) vector(31, n, round((-I)^(n-1)*2^((n-1)/2)*polchebyshev(n-1, 1, I*sqrt(2))) ) \\ G. C. Greubel, Jan 03 2020
(GAP) a:=[1, 2];; for n in [3..30] do a[n]:=4*a[n-1]+2*a[n-2]; od; a; # G. C. Greubel, Jan 03 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, May 10 2003
STATUS
approved