login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084059
a(n) = 4*a(n-1) + 2*a(n-2) for n>1, a(0)=1, a(1)=2.
8
1, 2, 10, 44, 196, 872, 3880, 17264, 76816, 341792, 1520800, 6766784, 30108736, 133968512, 596091520, 2652303104, 11801395456, 52510188032, 233643543040, 1039594548224, 4625665278976, 20581850212352, 91578731407360
OFFSET
0,2
COMMENTS
2*A084059 is the Lucas sequence V(4,-2). - Bruno Berselli, Jan 09 2013
FORMULA
E.g.f.: exp(2*x)*cosh(sqrt(6)*x).
a(n) = ((2+sqrt(6))^n + (2-sqrt(6))^n)/2. - Paul Barry, May 13 2003
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*2^(n-k)*3^k. - Paul Barry, Jan 15 2007
G.f.: (1-2*x)/(1-4*x-2*x^2). - Philippe Deléham, Sep 07 2009
a(n) = A090017(n+1) - 2*A090017(n). - R. J. Mathar, Apr 05 2011
a(n) = Sum_{k=0..n} A201730(n,k)*5^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k-2)/(x*(3*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = (-i)^n*2^(n/2)*ChebyshevT(n, i*sqrt(2)) = 2^((n-2)/2)*Lucas(n, 2*sqrt(2)). - G. C. Greubel, Jan 03 2020
MAPLE
seq(simplify(2^(n/2)*(-I)^n*ChebyshevT(n, I*sqrt(2))), n = 0..30); # G. C. Greubel, Jan 03 2020
MATHEMATICA
Table[(-I)^n*2^(n/2)*ChebyshevT[n, I*Sqrt[2]], {n, 0, 30}] (* G. C. Greubel, Jan 03 2020 *)
PROG
(Sage) [lucas_number2(n, 4, -2)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
(Magma) [n le 2 select n else 4*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011
(PARI) Vec((1-2*x)/(1-4*x-2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016
(PARI) vector(31, n, round((-I)^(n-1)*2^((n-1)/2)*polchebyshev(n-1, 1, I*sqrt(2))) ) \\ G. C. Greubel, Jan 03 2020
(GAP) a:=[1, 2];; for n in [3..30] do a[n]:=4*a[n-1]+2*a[n-2]; od; a; # G. C. Greubel, Jan 03 2020
CROSSREFS
Cf. A090017, A084120 (binom. transf.), A002533 (inv. bin. transf).
Sequence in context: A068551 A099919 A100397 * A339642 A084609 A105485
KEYWORD
nonn,easy
AUTHOR
Paul Barry, May 10 2003
STATUS
approved