This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084059 a(n) = 4*a(n-1)+2*a(n-2) for n>1, a(0)=1, a(1)=2. 8
 1, 2, 10, 44, 196, 872, 3880, 17264, 76816, 341792, 1520800, 6766784, 30108736, 133968512, 596091520, 2652303104, 11801395456, 52510188032, 233643543040, 1039594548224, 4625665278976, 20581850212352, 91578731407360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A002533. 2*A084059 is the Lucas sequence V(4,-2). [Bruno Berselli, Jan 09 2013] LINKS Index entries for linear recurrences with constant coefficients, signature (4,2). FORMULA E.g.f.: exp(2*x)*cosh(sqrt(6)*x). a(n) = ((2+sqrt(6))^n+(2-sqrt(6))^n)/2. - Paul Barry, May 13 2003 a(n) = sum(k=0..floor(n/2), C(n,2k)*2^(n-k)*3^k). - Paul Barry, Jan 15 2007 G.f.: (1-2x)/(1-4*x-2*x^2). [Philippe Deléham, Sep 07 2009] a(n) = A090017(n+1)-2*A090017(n). - R. J. Mathar, Apr 05 2011 a(n) = sum(k=0..n, A201730(n,k)*5^k). - Philippe Deléham, Dec 06 2011 G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k-2)/(x*(3*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013 PROG (Sage) [lucas_number2(n, 4, -2)/2 for n in range(0, 23)] # Zerinvary Lajos, May 14 2009 (MAGMA) [n le 2 select n else 4*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011 (PARI) Vec((1-2*x)/(1-4*x-2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016 CROSSREFS Cf. A090017. Sequence in context: A068551 A099919 A100397 * A084609 A105485 A151313 Adjacent sequences:  A084056 A084057 A084058 * A084060 A084061 A084062 KEYWORD nonn,easy,changed AUTHOR Paul Barry, May 10 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 01:42 EST 2019. Contains 329850 sequences. (Running on oeis4.)