login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084120
a(n) = 6*a(n-1) - 3*a(n-2), a(0)=1, a(1)=3.
12
1, 3, 15, 81, 441, 2403, 13095, 71361, 388881, 2119203, 11548575, 62933841, 342957321, 1868942403, 10184782455, 55501867521, 302456857761, 1648235544003, 8982042690735, 48947549512401, 266739169002201
OFFSET
0,2
COMMENTS
Binomial transform of A084059.
FORMULA
a(n) = ((3+sqrt(6))^n + (3-sqrt(6))^n)/2.
G.f.: (1-3*x)/(1-6*x+3*x^2).
E.g.f.: exp(3*x)*cosh(sqrt(6)*x).
a(n) = 3^n * Sum_{k=0..floor(n/2)} C(n, 2*k)*(2/3)^k. - Paul Barry, Sep 10 2005
Lim_{n -> oo} a(n)/a(n-1) = (3 + sqrt(6)) = 5.445489742... - Gary W. Adamson, Mar 19 2008
a(n) = Sum_{k=0..n} A147720(n,k)*3^k. - Philippe Deléham, Nov 15 2008
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(2*k-3)/(x*(2*k-1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = A138395(n) - 3*A138395(n-1). - R. J. Mathar, May 11 2022
EXAMPLE
G.f. = 1 + 3*x + 15*x^2 + 81*x^3 + 441*x^4 + 2403*x^5 + 13095*x^6 + ...
MATHEMATICA
LinearRecurrence[{6, -3}, {1, 3}, 30] (* Harvey P. Dale, Feb 25 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, polsym(x^2 - 6*x + 3, n)[1+n] / 2)};
(Sage) [lucas_number2(n, 6, 3)/2 for n in range(0, 27)] # Zerinvary Lajos, Jul 08 2008
(Magma) [n le 2 select 3^(n-1) else 6*Self(n-1) -3*Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 13 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 13 2003
STATUS
approved