login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198628
Alternating sums of powers for 1,2,3,4 and 5.
4
1, 3, 15, 81, 435, 2313, 12195, 63801, 331395, 1710153, 8775075, 44808921, 227890755, 1155180393, 5839846755, 29458152441, 148335904515, 745888593033, 3746364947235, 18799770158361, 94271405748675, 472449569948073, 2366624981836515, 11850654345690681, 59323452211439235
OFFSET
0,2
COMMENTS
See A196848 for the e.g.f.s and o.g.f.s of such sequences for the numbers 1,2,...,2*n+1, and A196847
for the numbers 1,2,...,2*n.
FORMULA
a(n) = sum(((-1)^(j+1))*j^n,j=1..5) = 1-2^n+3^n-4^n+5^n.
E.g.f.: sum(((-1)^(j+1))*exp(j*x),j=1..5) =
exp(x)*(1+exp(5*x))/(1+exp(x)).
O.g.f.: sum(((-1)^(j+1))/(1-j*x),j=1..5) =
(1-12*x+55*x^2-114*x^3+94*x^4)/product(1-j*x,j=1..5).
A formula for the numbers of the numerator polynomial is given in A196848.
MAPLE
A198628 := proc(n)
3^n-4^n+1-2^n+5^n ;
end proc:
seq(A198628(n), n=0..20) ; # R. J. Mathar, May 11 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 27 2011
STATUS
approved