login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104598
Expansion of (1-z-sqrt(1-4z))/(1-4z)^2.
1
1, 10, 68, 394, 2092, 10516, 50920, 239962, 1107836, 5033020, 22572376, 100168260, 440604088, 1923626344, 8344694224, 35998921978, 154546983580, 660652406572, 2813422792696, 11940478362796, 50522190460072
OFFSET
1,2
LINKS
D. Merlini, Generating functions for the area below some lattice paths, Discrete Mathematics and Theoretical Computer Science AC, 2003, 217-228.
FORMULA
Recurrence: n*(3*n-4)*a(n) = 2*(12*n^2-13*n-2)*a(n-1) - 8*(2*n-1)*(3*n-1) * a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 3*2^(2*n-2)*n*(1-8/(3*sqrt(Pi)*sqrt(n))). - Vaclav Kotesovec, Oct 17 2012
a(n) = 2^(2*n-2)*(3*n+4)-(n+1)*C(2*n+1,n). - Vaclav Kotesovec, Oct 28 2012
MATHEMATICA
Rest[CoefficientList[Series[(1-x-Sqrt[1-4*x])/(1-4*x)^2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Oct 17 2012 *)
Table[2^(2*n-2)*(3*n+4)-(n+1)*Binomial[2*n+1, n], {n, 1, 20}] (* Vaclav Kotesovec, Oct 28 2012 *)
CROSSREFS
Sequence in context: A280438 A192021 A026984 * A026901 A027242 A081656
KEYWORD
nonn
AUTHOR
Ralf Stephan, Mar 17 2005
STATUS
approved