login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-z-sqrt(1-4z))/(1-4z)^2.
1

%I #17 Jan 29 2024 03:26:01

%S 1,10,68,394,2092,10516,50920,239962,1107836,5033020,22572376,

%T 100168260,440604088,1923626344,8344694224,35998921978,154546983580,

%U 660652406572,2813422792696,11940478362796,50522190460072

%N Expansion of (1-z-sqrt(1-4z))/(1-4z)^2.

%H Vincenzo Librandi, <a href="/A104598/b104598.txt">Table of n, a(n) for n = 1..200</a>

%H D. Merlini, <a href="https://doi.org/10.46298/dmtcs.3323">Generating functions for the area below some lattice paths</a>, Discrete Mathematics and Theoretical Computer Science AC, 2003, 217-228.

%F Recurrence: n*(3*n-4)*a(n) = 2*(12*n^2-13*n-2)*a(n-1) - 8*(2*n-1)*(3*n-1) * a(n-2). - _Vaclav Kotesovec_, Oct 17 2012

%F a(n) ~ 3*2^(2*n-2)*n*(1-8/(3*sqrt(Pi)*sqrt(n))). - _Vaclav Kotesovec_, Oct 17 2012

%F a(n) = 2^(2*n-2)*(3*n+4)-(n+1)*C(2*n+1,n). - _Vaclav Kotesovec_, Oct 28 2012

%t Rest[CoefficientList[Series[(1-x-Sqrt[1-4*x])/(1-4*x)^2, {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Oct 17 2012 *)

%t Table[2^(2*n-2)*(3*n+4)-(n+1)*Binomial[2*n+1,n],{n,1,20}] (* _Vaclav Kotesovec_, Oct 28 2012 *)

%K nonn

%O 1,2

%A _Ralf Stephan_, Mar 17 2005