login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221969
Number of -n..n arrays of length 6 with the sum ahead of each element differing from the sum following that element by n or less.
1
129, 2305, 16513, 73089, 241153, 653185, 1535745, 3246337, 6316417, 11500545, 19831681, 32682625, 51833601, 79545985, 118642177, 172591617, 245602945, 342722305, 469937793, 634290049, 843988993, 1108536705, 1438856449
OFFSET
1,1
COMMENTS
Row 6 of A221967.
LINKS
FORMULA
Empirical: a(n) = (128/15)*n^6 + (128/5)*n^5 + (112/3)*n^4 + 32*n^3 + (272/15)*n^2 + (32/5)*n + 1.
Conjectures from Colin Barker, Aug 14 2018: (Start)
G.f.: x*(3 + x)*(43 + 453*x + 878*x^2 + 170*x^3 - 9*x^4 + x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=6:
..0...-3....0....3....3...-6....3....3...-6....0....3....0...-6...-3...-3....0
..1...-5....5...-3...-3....3...-3....3....1...-2...-6...-3....5...-3....1....0
..3....4...-3...-1...-5....3....5...-4....5....4...-1....5...-4....3....0....1
.-2...-3...-5....0....4...-2...-3....0...-5...-3....0...-3....0...-1....3...-6
.-4....1....5...-2....4...-1....2....2...-1....4....3...-1....2....2....0....5
..4...-2....0....4...-5...-2....4....2...-4...-2...-1....2...-1...-6...-2....1
CROSSREFS
Cf. A221967.
Sequence in context: A013955 A294302 A343509 * A036085 A000541 A023876
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 01 2013
STATUS
approved