login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208237
G.f.: Sum_{n>=0} n! * x^n * Product_{k=1..n} (1 + k*x) / (1 + k*x + k^2*x^2).
6
1, 1, 2, 5, 15, 54, 223, 1045, 5474, 31685, 200895, 1384470, 10304431, 82376101, 703949762, 6403761365, 61784985615, 630180031734, 6775001385343, 76572619018165, 907658144193314, 11259399965148005, 145879271404693215, 1970471655222795990, 27702625497930064591
OFFSET
0,3
COMMENTS
Compare to the identity:
Sum_{n>=0} n! * x^n * Product_{k=1..n} (1 + x) / (1 + k*x + k*x^2) = 1/(1-x-x^2).
Compare also to the g.f. of A136127:
x*Sum_{n>=0} n! * x^n * Product_{k=1..n} (2 + k*x) / (1 + 2*k*x + k^2*x^2).
LINKS
FORMULA
a(n) ~ 2 * 3^(n/2 + 5/4) * n^(n+2) / (exp(n) * Pi^(n+3/2)). - Vaclav Kotesovec, Nov 02 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 54*x^5 + 223*x^6 + 1045*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + 2!*x^2*(1+x)*(1+2*x)/((1+x+x^2)*(1+2*x+4*x^2)) + 3!*x^3*(1+x)*(1+2*x)*(1+3*x)/((1+x+x^2)*(1+2*x+4*x^2)*(1+3*x+9*x^2)) + 4!*x^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)/((1+x+x^2)*(1+2*x+4*x^2)*(1+3*x+9*x^2)*(1+4*x+16*x^2)) +...
PROG
(PARI) {a(n)=polcoeff( sum(m=0, n, m!*x^m*prod(k=1, m, (1+k*x)/(1+k*x+k^2*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 11 2013
STATUS
approved