login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378579
G.f. A(x) satisfies x = Sum_{n>=1} ((1 + A(x)^n)^n - 1).
1
1, -2, 5, -15, 54, -226, 1041, -5045, 25090, -126674, 646764, -3335207, 17359589, -91138625, 482237135, -2569446532, 13774698084, -74245779493, 402105384051, -2187066640025, 11941274232967, -65425584835537, 359598131529024, -1982178299221646, 10955208670488609, -60696056311093958, 337040131916813474
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) x = Sum_{n>=1} ((1 + A(x)^n)^n - 1).
(2) x = Sum_{n>=1} A(x)^(n^2) / (1 - A(x)^n)^(n+1), from formula by Seiichi Manyama in A318636.
(3) x = Sum_{n>=1} A(x)^n * Sum_{d|n} binomial(n/d,d), from formula by Ridouane Oudra in A318636.
(4) A(x) = Series_Reversion(G(x)), where G(x) = Sum_{n>=1} ((1 + x^n)^n - 1) is the g.f. of A318636.
EXAMPLE
G.f.: A(x) = x - 2*x^2 + 5*x^3 - 15*x^4 + 54*x^5 - 226*x^6 + 1041*x^7 - 5045*x^8 + 25090*x^9 - 126674*x^10 + 646764*x^11 - 3335207*x^12 + ...
where
x = (1 + A(x))-1 + (1 + A(x)^2)^2-1 + (1 + A(x)^3)^3-1 + (1 + A(x)^4)^4-1 + ...
The expansions of (1 + A(x)^n)^n - 1 begin:
n=1: x - 2*x^2 + 5*x^3 - 15*x^4 + 54*x^5 - 226*x^6 + 1041*x^7 - 5045*x^8 + ...
n=2: 2*x^2 - 8*x^3 + 29*x^4 - 108*x^5 + 430*x^6 - 1848*x^7 + 8484*x^8 + ...
n=3: 3*x^3 - 18*x^4 + 81*x^5 - 336*x^6 + 1395*x^7 - 6048*x^8 + ...
n=4: 4*x^4 - 32*x^5 + 176*x^6 - 848*x^7 + 3934*x^8 - 18416*x^9 + ...
n=5: 5*x^5 - 50*x^6 + 325*x^7 - 1775*x^8 + 9000*x^9 + ...
n=6: 6*x^6 - 72*x^7 + 540*x^8 - 3300*x^9 + 18234*x^10 + ...
n=7: 7*x^7 - 98*x^8 + 833*x^9 - 5635*x^10 + 33761*x^11 + ...
n=8: 8*x^8 - 128*x^9 + 1216*x^10 - 9024*x^11 + 58336*x^12 + ...
...
the sum of which equals x.
SPECIFIC VALUES.
A(t) = 1/8 at t = 0.16352126551257248889045664875683784263524590236453...
where t = Sum_{n>=1} ((1 + 1/8^n)^n - 1),
also, t = Sum_{n>=1} (1/8)^(n^2) / (1 - 1/8^n)^(n+1).
A(t) = 1/9 at t = 0.14078320572038685935740333771629838603314392626246...
where t = Sum_{n>=1} ((1 + 1/9^n)^n - 1),
also, t = Sum_{n>=1} (1/9)^(n^2) / (1 - 1/9^n)^(n+1).
A(t) = 1/10 at t = 0.12355985214267974666409476695653610216564400778886...
where t = Sum_{n>=1} ((1 + 1/10^n)^n - 1).
A(t) = -1/4 at t = -0.15526284433046589758223569590356891892154738705096...
A(t) = -1/5 at t = -0.13708093574671812870578995929148440226274633630611...
A(1/6) = 0.12685609485901293251324636636937755144064758593774...
where 1/6 = Sum_{n>=1} ((1 + A(1/6)^n)^n - 1).
A(1/7) = 0.11241354571385669088090100601380487815275189296537...
A(1/8) = 0.10094983523585092678474357142194212014408583724977...
A(1/9) = 0.09162346270443389626958872306814641680247795571686...
A(-1/6) = -0.29924902046763454720023815313494776169729752567409...
A(-1/7) = -0.21417128882821263382592721321354392301151580309678...
A(-1/8) = -0.17350785733170913051439226143409362909355792177797...
PROG
(PARI) {a(n) = my(A = serreverse( sum(m=1, n, (1 + x^m +x*O(x^n))^m - 1) ));
polcoef(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A318636.
Sequence in context: A185040 A369599 A208237 * A321958 A107112 A193318
KEYWORD
sign,new
AUTHOR
Paul D. Hanna, Jan 08 2025
STATUS
approved