login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208239
Triangle read by rows: T(n,m) = n + k - n/k, where k is the m-th divisor of n; 1 <= m <= tau(n).
2
1, 1, 3, 1, 5, 1, 4, 7, 1, 9, 1, 5, 7, 11, 1, 13, 1, 6, 10, 15, 1, 9, 17, 1, 7, 13, 19, 1, 21, 1, 8, 11, 13, 16, 23, 1, 25, 1, 9, 19, 27, 1, 13, 17, 29, 1, 10, 16, 22, 31, 1, 33, 1, 11, 15, 21, 25, 35, 1, 37, 1, 12, 19, 21, 28, 39, 1, 17, 25, 41, 1, 13, 31, 43, 1, 45, 1, 14, 19, 22, 26
OFFSET
1,3
COMMENTS
n-th row sum is equal to A038040(n) = d(n)*n, where d = A000005.
Numbers n such that n + k - n/k is noncomposite number for all divisors k of n: 1, 2, 3, 6, 7, 10, 15, 19, 22, 30, 31, 37, 42, 57, 70, 79, 87, 97,...
Numbers n such that n + k - n/k is nonprime number for all divisor k of n: 1, 5, 8, 11, 13, 17, 23, 25, 29, 32, 38, 41, 43, 47, 53, 56, 59, 61, 62, 67, 68, 71, 73, 80, 81, 83, 88, 89, 93, 98, 101, 103, 107, 109, 111, 113, 121, 123, 125, 127,...
Smallest m such that n = m + k - m/k for all k is divisor of n, or 0 if no such m exists : 1, 0, 2, 4, 3, 8, 4, 12, 5, 8, 6, 20, 7, 24, 8, 12, 9, 32, 10, 36, 11, 16, 12, 44, 13, 24, 14, 20, 15, 56, 16, 60, 17, 24,..
Number of ways to write n as (p - q)/(1 - 1/q), where p is prime and q is a prime divisor of n: 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 1, 0, 1, 2, 0, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 3, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 3, 0, 0, 1, 1, 0,...
Numbers n of the form (s - r)(1/s - 1) where s is divisor of n and r is anti-divisor of n: 10, 12, 14,...
The n-th row starts with 1 and ends with 2n-1; the first differences are symmetric w.r.t. reversal of the row (which corresponds to exchange of k and n/k). The second term in even lines is n/2+2. - M. F. Hasler, Jan 26 2013
If n is prime then n-th row is 1, 2n-1. - Zak Seidov, Feb 22 2013
T(n,A000005(n)) = A005408(n-1). - Reinhard Zumkeller, Feb 25 2013
FORMULA
T(n,k) = n + A027750(n,k) + A027750(n,A000005(n)+1-k), 1<=k<=A000005(n). - Reinhard Zumkeller, Feb 25 2013
EXAMPLE
Triangle begins:
1,
1, 3,
1, 5,
1, 4, 7,
1, 9,
1, 5, 7, 11,
1, 13,
1, 6, 10, 15,
1, 9, 17,
1, 7, 13, 19,
1, 21,
1, 8, 11, 13, 16, 23.
In this last, 12th line (ending with 2*12-1), the first differences are (7,3,2,3,7).
MATHEMATICA
row[n_] := Table[n + k - n/k, {k, Divisors[n]}]; Table[row[n], {n, 1, 24}] // Flatten (* Jean-François Alcover, Jan 21 2013 *)
PROG
(Haskell)
a208239 n k = a208239_row n !! k
a208239_row n = map (+ n) $ zipWith (-) divs $ reverse divs
where divs = a027750_row n
a208239_tabl = map a208239_row [1..]
-- Reinhard Zumkeller, Feb 25 2013
CROSSREFS
Row lengths are A000005.
Sequence in context: A300893 A325249 A352453 * A114567 A001051 A214737
KEYWORD
nonn,tabf
AUTHOR
Gerasimov Sergey, Jan 11 2013
STATUS
approved