login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087909
a(n) = Sum_{d|n} (n/d)^(d-1).
21
1, 2, 2, 4, 2, 9, 2, 14, 11, 23, 2, 83, 2, 73, 108, 202, 2, 546, 2, 905, 780, 1037, 2, 5553, 627, 4111, 6644, 12647, 2, 40605, 2, 49682, 59172, 65555, 18028, 382424, 2, 262165, 531612, 869675, 2, 2706581, 2, 3147083, 5180382, 4194329, 2, 27246533, 117651
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>0} x^k/(1-k*x^k).
From Seiichi Manyama, Jun 17 2019: (Start)
L.g.f.: -log(Product_{k>=1} (1 - k*x^k)^(1/k^2)) = Sum_{k>=1} a(k)*x^k/k.
a(p) = 2 for prime p. (End)
MATHEMATICA
a[n_]:= DivisorSum[n, (n/#)^(#-1) &]; Array[a, 30] (* G. C. Greubel, May 16 2018 *)
PROG
(PARI) a(n)=sumdiv(n, d, d^(n/d-1) ); /* Joerg Arndt, Oct 07 2012 */
(PARI) N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k*x^k)^(1/k^2))))) \\ Seiichi Manyama, Jun 17 2019
CROSSREFS
Sequence in context: A181236 A280684 A322671 * A076078 A292786 A326486
KEYWORD
nonn,look
AUTHOR
Vladeta Jovovic, Oct 15 2003
STATUS
approved