login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078308
a(n) = Sum_{d divides n} d^(n/d + 1).
31
1, 5, 10, 25, 26, 80, 50, 161, 163, 290, 122, 988, 170, 796, 1580, 2305, 290, 5561, 362, 10670, 9404, 5912, 530, 58436, 16251, 19258, 66340, 118640, 842, 381740, 962, 431105, 547172, 268214, 509500, 3534037, 1370, 1056880, 4813052, 8616326, 1682
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{n>0} n^2*x^n/(1-n*x^n).
L.g.f.: -log(Product_{ k>0 } (1-k*x^k)) = Sum_{ n>=0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 04 2016
MAPLE
A078308 := proc(n)
add( d^(n/d+1), d=numtheory[divisors](n)) ;
end proc:
seq(A078308(n), n=1..10) ; # R. J. Mathar, Dec 14 2011
MATHEMATICA
Table[CoefficientList[Series[-Log[Product[(1 - k x^k), {k, 1, 60}]], {x, 0, 60}], x][[n + 1]] (n), {n, 1, 60}] (* Benedict W. J. Irwin, Jul 04 2016 *)
PROG
(PARI) a(n) = sumdiv(n, d, d^(n/d+1)); \\ Michel Marcus, Jul 04 2016
(PARI) N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, 1-k*x^k)))) \\ Seiichi Manyama, Jun 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Nov 22 2002
STATUS
approved