login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078308 a(n) = Sum_{d divides n} d^(n/d + 1). 8
1, 5, 10, 25, 26, 80, 50, 161, 163, 290, 122, 988, 170, 796, 1580, 2305, 290, 5561, 362, 10670, 9404, 5912, 530, 58436, 16251, 19258, 66340, 118640, 842, 381740, 962, 431105, 547172, 268214, 509500, 3534037, 1370, 1056880, 4813052, 8616326, 1682 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..6284

FORMULA

G.f.: Sum_{n>0} n^2*x^n/(1-n*x^n).

L.g.f.: -log(Product_{ k>0 } (1-k*x^k)) = Sum_{ n>=0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 04 2016

MAPLE

A078308 := proc(n)

        add( d^(n/d+1), d=numtheory[divisors](n)) ;

end proc:

seq(A078308(n), n=1..10) ; # R. J. Mathar, Dec 14 2011

MATHEMATICA

Table[CoefficientList[Series[-Log[Product[(1 - k x^k), {k, 1, 60}]], {x, 0, 60}], x][[n + 1]] (n), {n, 1, 60}] (* Benedict W. J. Irwin, Jul 04 2016 *)

PROG

(PARI) a(n) = sumdiv(n, d, d^(n/d+1)); \\ Michel Marcus, Jul 04 2016

(PARI) N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, 1-k*x^k)))) \\ Seiichi Manyama, Jun 02 2019

CROSSREFS

Cf. A055225, A006906, A022661.

Sequence in context: A269740 A166635 A289320 * A083493 A061259 A072421

Adjacent sequences:  A078305 A078306 A078307 * A078309 A078310 A078311

KEYWORD

nonn

AUTHOR

Vladeta Jovovic, Nov 22 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 04:14 EST 2019. Contains 329784 sequences. (Running on oeis4.)