login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} (n/d)^(d-1).
21

%I #30 Jun 17 2019 13:51:23

%S 1,2,2,4,2,9,2,14,11,23,2,83,2,73,108,202,2,546,2,905,780,1037,2,5553,

%T 627,4111,6644,12647,2,40605,2,49682,59172,65555,18028,382424,2,

%U 262165,531612,869675,2,2706581,2,3147083,5180382,4194329,2,27246533,117651

%N a(n) = Sum_{d|n} (n/d)^(d-1).

%H Seiichi Manyama, <a href="/A087909/b087909.txt">Table of n, a(n) for n = 1..6290</a>

%F G.f.: Sum_{k>0} x^k/(1-k*x^k).

%F From _Seiichi Manyama_, Jun 17 2019: (Start)

%F L.g.f.: -log(Product_{k>=1} (1 - k*x^k)^(1/k^2)) = Sum_{k>=1} a(k)*x^k/k.

%F a(p) = 2 for prime p. (End)

%t a[n_]:= DivisorSum[n, (n/#)^(#-1) &]; Array[a, 30] (* _G. C. Greubel_, May 16 2018 *)

%o (PARI) a(n)=sumdiv(n, d, d^(n/d-1) ); /* _Joerg Arndt_, Oct 07 2012 */

%o (PARI) N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k*x^k)^(1/k^2))))) \\ _Seiichi Manyama_, Jun 17 2019

%Y Cf. A055225, A078308.

%K nonn,look

%O 1,2

%A _Vladeta Jovovic_, Oct 15 2003