login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322671
a(n) = Sum_{d|n} (pod(d)/d), where pod(k) is the product of the divisors of k (A007955).
3
1, 2, 2, 4, 2, 9, 2, 12, 5, 13, 2, 155, 2, 17, 18, 76, 2, 336, 2, 415, 24, 25, 2, 13987, 7, 29, 32, 803, 2, 27035, 2, 1100, 36, 37, 38, 280418, 2, 41, 42, 64423, 2, 74133, 2, 1963, 2046, 49, 2, 5322467, 9, 2518, 54, 2735, 2, 157827, 58, 176427, 60, 61, 2
OFFSET
1,2
LINKS
FORMULA
a(n) = n for n = 1, 2 and 4.
a(n) = n + (tau(n) - 1) = n + 3 for squarefree semiprimes (A006881).
a(n) = 2 if n is prime. - Robert Israel, Dec 23 2018
EXAMPLE
For n = 6; a(6) = pod(1)/1 + pod(2)/2 + pod(3)/3 + pod(6)/6 = 1/1 + 2/2 + 3/3 + 36/6 = 9.
MAPLE
pod:= proc(n) convert(numtheory:-divisors(n), `*`) end proc:
f:= proc(n) local d; add(pod(d)/d, d = numtheory:-divisors(n)) end proc:
map(f, [$1..100]); # Robert Israel, Dec 23 2018
MATHEMATICA
Array[Sum[Apply[Times, Divisors@ d]/d, {d, Divisors@ #}] &, 59] (* Michael De Vlieger, Jan 19 2019 *)
PROG
(Magma) [&+[&*[c: c in Divisors(d)] / d: d in Divisors(n)]: n in [1..100]]
(PARI) a(n) = sumdiv(n, d, vecprod(divisors(d))/d); \\ Michel Marcus, Dec 23 2018
(Python)
from math import isqrt
from sympy import divisor_count, divisors
def A322671(n): return sum(isqrt(d)**(c-2) if (c:=divisor_count(d)) & 1 else d**(c//2-1) for d in divisors(n, generator=True)) # Chai Wah Wu, Jun 25 2022
CROSSREFS
Sequence in context: A173300 A181236 A280684 * A087909 A076078 A292786
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 23 2018
STATUS
approved