login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173300
a(n) is the denominator of the fraction f = x^n + y^n given that x + y = 1 and x^2 + y^2 = 2.
4
1, 1, 2, 2, 4, 2, 8, 8, 16, 8, 32, 32, 64, 32, 128, 128, 256, 128, 512, 512, 1024, 512, 2048, 2048, 4096, 2048, 8192, 8192, 16384, 8192, 32768, 32768, 65536, 32768, 131072, 131072, 262144, 131072, 524288, 524288, 1048576, 524288, 2097152, 2097152, 4194304, 2097152
OFFSET
1,3
COMMENTS
The denominators of the coefficients of the Taylor series representation of (1+x)/(1-2*x-11*x^2-6*x^3) around x=-1 lead to this sequence, see the Maple program. - Johannes W. Meijer, Aug 16 2010
FORMULA
a(n) = denominator of ((1+sqrt(3))/2)^n + ((1-sqrt(3))/2)^n. - Max Alekseyev, Feb 23 2010
Conjecture: a(n) = 4*a(n-4), for n >= 7. - Paolo Xausa, Feb 02 2024
EXAMPLE
a(3) = 2 because x^3 + y^3 = 5/2.
MAPLE
nmax:=45: f:=n-> coeftayl((1+x)/(1-2*x-11*x^2-6*x^3), x=-1, n): a(1):=1: for n from 0 to nmax do a(n+2):= denom(f(n)) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Aug 16 2010
MATHEMATICA
Denominator[Map[First, NestList[{Last[#], Last[#] + First[#]/2} &, {1, 2}, 50]]] (* Paolo Xausa, Feb 01 2024, after Nick Hobson *)
PROG
(PARI) a(n) = denominator(2*polcoeff( lift( Mod((1+x)/2, x^2-3)^n ), 0)) \\ Max Alekseyev, Feb 23 2010
(Python)
from fractions import Fraction
def a173300_gen(a, b):
while True:
yield a.denominator
b, a = b + Fraction(a, 2), b
for n, a_n in zip(range(1, 47), a173300_gen(1, 2)):
print(n, a_n) # Nick Hobson, Jan 30 2024
CROSSREFS
Cf. A173989 (2-adic valuations).
Sequence in context: A303140 A370469 A103178 * A181236 A280684 A322671
KEYWORD
nonn,frac
AUTHOR
J. Lowell, Feb 15 2010
EXTENSIONS
More terms from Max Alekseyev, Feb 23 2010
STATUS
approved