Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Feb 04 2024 18:39:09
%S 1,1,2,2,4,2,8,8,16,8,32,32,64,32,128,128,256,128,512,512,1024,512,
%T 2048,2048,4096,2048,8192,8192,16384,8192,32768,32768,65536,32768,
%U 131072,131072,262144,131072,524288,524288,1048576,524288,2097152,2097152,4194304,2097152
%N a(n) is the denominator of the fraction f = x^n + y^n given that x + y = 1 and x^2 + y^2 = 2.
%C The denominators of the coefficients of the Taylor series representation of (1+x)/(1-2*x-11*x^2-6*x^3) around x=-1 lead to this sequence, see the Maple program. - _Johannes W. Meijer_, Aug 16 2010
%F a(n) = denominator of ((1+sqrt(3))/2)^n + ((1-sqrt(3))/2)^n. - _Max Alekseyev_, Feb 23 2010
%F Conjecture: a(n) = 4*a(n-4), for n >= 7. - _Paolo Xausa_, Feb 02 2024
%e a(3) = 2 because x^3 + y^3 = 5/2.
%p nmax:=45: f:=n-> coeftayl((1+x)/(1-2*x-11*x^2-6*x^3), x=-1, n): a(1):=1: for n from 0 to nmax do a(n+2):= denom(f(n)) od: seq(a(n),n=1..nmax); # _Johannes W. Meijer_, Aug 16 2010
%t Denominator[Map[First, NestList[{Last[#], Last[#] + First[#]/2} &, {1, 2}, 50]]] (* _Paolo Xausa_, Feb 01 2024, after _Nick Hobson_ *)
%o (PARI) a(n) = denominator(2*polcoeff( lift( Mod((1+x)/2,x^2-3)^n ), 0)) \\ _Max Alekseyev_, Feb 23 2010
%o (Python)
%o from fractions import Fraction
%o def a173300_gen(a, b):
%o while True:
%o yield a.denominator
%o b, a = b + Fraction(a, 2), b
%o for n, a_n in zip(range(1, 47), a173300_gen(1, 2)):
%o print(n, a_n) # _Nick Hobson_, Jan 30 2024
%Y Cf. A173299, A179596.
%Y Cf. A173989 (2-adic valuations).
%K nonn,frac
%O 1,3
%A _J. Lowell_, Feb 15 2010
%E More terms from _Max Alekseyev_, Feb 23 2010