OFFSET
1,1
COMMENTS
T(n,k) is the number of points on the n-dimensional cross polytope with facets at distance k from the origin which have no coordinate equal to 0.
T(n,n) = 2^n. The (n-1)-dimensional simplex at distance n from the origin in Z^n has exactly 1 point with no zero coordinates, at (1,1,...,1). There are 2^n (n-1)-dimensional simplexes at distance n from the origin as part of the cross polytope in Z^n. (The lower dimensional facets do not count as they have at least one 0 coordinate.)
T(2*n,3*n) = T(2*n+1,3*n), and this is A036909.
FORMULA
T(n,k) = binomial(k-1,n-1)*2^n.
G.f.: 2*x*y/(1 - y - 2*x*y). - Stefano Spezia, Apr 27 2024
EXAMPLE
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-----------------------------------------------------------------------
1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 | 4 8 12 16 20 24 28 32 36 40 44 48 52 56
3 | 8 24 48 80 120 168 224 288 360 440 528 624 728
4 | 16 64 160 320 560 896 1344 1920 2640 3520 4576 5824
5 | 32 160 480 1120 2240 4032 6720 10560 15840 22880 32032
6 | 64 384 1344 3584 8064 16128 29568 50688 82368 128128
7 | 128 896 3584 10752 26880 59136 118272 219648 384384
8 | 256 2048 9216 30720 84480 202752 439296 878592
9 | 512 4608 23040 84480 253440 658944 1537536
10 | 1024 10240 56320 225280 732160 2050048
11 | 2048 22528 135168 585728 2050048
12 | 4096 49152 319488 1490944
13 | 8192 106496 745472
14 | 16384 229376
15 | 32768
The cross polytope in Z^3 (the octahedron) with points at distance 3 from the origin has 8 triangle facets, each with edge length 4. There is one point in the center of each triangle with coordinates (+-1,+-1,+-1).
MATHEMATICA
T[n_, k_]:=Binomial[k-1, n-1]*2^n; Table[T[n, k], {k, 10}, {n, k}]//Flatten
PROG
(Python)
from math import comb
def A370469_T(n, k): return comb(k-1, n-1)<<n # Chai Wah Wu, Apr 25 2024
CROSSREFS
KEYWORD
tabl,nonn
AUTHOR
Shel Kaphan, Mar 30 2024
STATUS
approved