OFFSET
1,5
COMMENTS
Conjecture: always follows the pattern A, A, A+1, A, where A is an odd number.
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = log(A173300(n))/log(2).
Apparently a(n) = A102302(n) for n >= 7. - Hugo Pfoertner, Oct 10 2018
Conjectures from Colin Barker, Oct 10 2018: (Start)
G.f.: x^3*(1 + x^2 - x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 7.
(End)
MAPLE
From R. J. Mathar, Mar 20 2010: (Start)
A173300 := proc(n) local x, y ; x := (1+sqrt(3))/2 ; y := (1-sqrt(3))/2 ; denom(expand(x^n+y^n)) ; end proc:
MATHEMATICA
Log2[Denominator[Map[First, NestList[{Last[#], Last[#] + First[#]/2} &, {1, 2}, 100]]]] (* Paolo Xausa, Feb 01 2024, after Nick Hobson in A173300 *)
PROG
(PARI) \\ using Max Alekseyev's function in A173300
A173300(n) = denominator(2*polcoeff( lift( Mod((1+x)/2, x^2-3)^n ), 0))
for(k=1, 74, print1(logint(A173300(k), 2), ", ")) \\ Hugo Pfoertner, Oct 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
J. Lowell, Mar 04 2010
EXTENSIONS
More terms from R. J. Mathar and Max Alekseyev, Mar 20 2010
STATUS
approved