login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173988 Triangle T(n,k) = 2^(k-1)*n*binomial(n-k,2*k-2)/(n-3*k+3) if k<n/3+1, else T(n,k)=1. 0
1, 1, 1, 8, 1, 15, 1, 24, 1, 1, 35, 28, 1, 48, 80, 1, 1, 63, 180, 1, 1, 80, 350, 80, 1, 1, 99, 616, 308, 1, 1, 120, 1008, 896, 1, 1, 1, 143, 1560, 2184, 208, 1, 1, 168, 2310, 4704, 1008, 1, 1, 1, 195, 3300, 9240, 3600, 1, 1, 1, 224, 4576, 16896, 10560, 512, 1, 1, 1, 255, 6188, 29172 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,4

COMMENTS

Row sums are 1, 1, 9, 16, 26, 64, 130, 245, 512, 1025, 2027,...

LINKS

Table of n, a(n) for n=2..69.

EXAMPLE

The triangle starts in row n=2 with columns 1<= k <= n/2 as:

1;

1;

1, 8;

1, 15;

1, 24, 1;

1, 35, 28;

1, 48, 80, 1;

1, 63, 180, 1;

1, 80, 350, 80, 1;

1, 99, 616, 308, 1;

1, 120, 1008, 896, 1, 1;

MATHEMATICA

g[n_, k_] = If[(n - 3*k + 3) > 0, 2^k*n*Binomial[n - k, 2*k - 2]/(n - 3*k + 3), 2]/2;

Table[Table[g[n, k], {k, 1, Floor[n/2]}], {n, 2, 12}];

Flatten[%]

CROSSREFS

Sequence in context: A298143 A181762 A209684 * A349123 A158893 A342636

Adjacent sequences:  A173985 A173986 A173987 * A173989 A173990 A173991

KEYWORD

nonn,easy,tabf

AUTHOR

Roger L. Bagula, Mar 04 2010

EXTENSIONS

Tabl replaced by tabf, replaced Mma notation, extended beyond n=12, removed broken link w/o author or title - The Assoc. Eds. of the OEIS - Nov 02 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 21:32 EST 2021. Contains 349416 sequences. (Running on oeis4.)