login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378939
Number of Schroeder paths of semilength n up to reversal.
1
1, 2, 5, 15, 54, 216, 947, 4375, 21018, 103550, 520041, 2649391, 13655190, 71053780, 372727751, 1968880111, 10463765490, 55909445082, 300160457453, 1618364548591, 8759315367894, 47574840887024, 259215969470139, 1416461749625543, 7760734001872842, 42624971709868054
OFFSET
0,2
COMMENTS
A Schroeder path of semilength n is a path from (0,0) to (2n,0) using only steps U = (1,1), H = (2,0) and D = (1,-1). This sequence considers a path and its reversal to be the same.
LINKS
FORMULA
a(n) = (A006318(n) + A110110(n))/2.
G.f.: ( -2*x - sqrt(1 - 6*x + x^2) + sqrt(1 - 6*x^2 + x^4)*(1 + x)/(1 - 2*x - x^2) ) / (4*x).
EXAMPLE
The a(1)..a(3) paths are:
a(1) = 1: H, UD;
a(2) = 5: HH, UHD, UDUD, UUDD, HUD=UDH;
a(3) = 15: HHH, HUDH, UHHD, UDHUD, UDUDUD, UUHDD, UUDUDD, UUUDDD, HHUD=UDHH, HUHD=UHDH, HUDUD=UDUDH, UHDUD=UDUHD, HUUDD=UDUDH, UHUDD=UUDHD, UDUUDD=UUDDUD.
PROG
(PARI) seq(n) = { my(A=O(x^(n+2))); Vec(( -2*x - sqrt(1 - 6*x + x^2 + A) + sqrt(1 - 6*x^2 + x^4 + A)*(1 + x)/(1 - 2*x - x^2) ) / (4*x)) }
CROSSREFS
Cf. A006318, A110110, A007123 (similar for Dyck paths), A378941 (similar for Motzkin paths).
Sequence in context: A336020 A277175 A056841 * A185040 A369599 A208237
KEYWORD
nonn,new
AUTHOR
Andrew Howroyd, Dec 19 2024
STATUS
approved