login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Schroeder paths of semilength n up to reversal.
1

%I #7 Dec 19 2024 12:17:18

%S 1,2,5,15,54,216,947,4375,21018,103550,520041,2649391,13655190,

%T 71053780,372727751,1968880111,10463765490,55909445082,300160457453,

%U 1618364548591,8759315367894,47574840887024,259215969470139,1416461749625543,7760734001872842,42624971709868054

%N Number of Schroeder paths of semilength n up to reversal.

%C A Schroeder path of semilength n is a path from (0,0) to (2n,0) using only steps U = (1,1), H = (2,0) and D = (1,-1). This sequence considers a path and its reversal to be the same.

%H Andrew Howroyd, <a href="/A378939/b378939.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = (A006318(n) + A110110(n))/2.

%F G.f.: ( -2*x - sqrt(1 - 6*x + x^2) + sqrt(1 - 6*x^2 + x^4)*(1 + x)/(1 - 2*x - x^2) ) / (4*x).

%e The a(1)..a(3) paths are:

%e a(1) = 1: H, UD;

%e a(2) = 5: HH, UHD, UDUD, UUDD, HUD=UDH;

%e a(3) = 15: HHH, HUDH, UHHD, UDHUD, UDUDUD, UUHDD, UUDUDD, UUUDDD, HHUD=UDHH, HUHD=UHDH, HUDUD=UDUDH, UHDUD=UDUHD, HUUDD=UDUDH, UHUDD=UUDHD, UDUUDD=UUDDUD.

%o (PARI) seq(n) = { my(A=O(x^(n+2))); Vec(( -2*x - sqrt(1 - 6*x + x^2 + A) + sqrt(1 - 6*x^2 + x^4 + A)*(1 + x)/(1 - 2*x - x^2) ) / (4*x)) }

%Y Cf. A006318, A110110, A007123 (similar for Dyck paths), A378941 (similar for Motzkin paths).

%K nonn

%O 0,2

%A _Andrew Howroyd_, Dec 19 2024