login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277175
Convolution of Catalan numbers and factorial numbers.
4
1, 2, 5, 15, 53, 222, 1120, 6849, 50111, 427510, 4142900, 44693782, 529276962, 6813205468, 94642629984, 1410507388421, 22445134308123, 379776665469030, 6808016435182620, 128886547350655050, 2569493300908367550, 53805226930896987540, 1180673761078007109840
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{i=0..n} C(i) * (n-i)!.
a(n) ~ n! * (1 + 1/n + 2/n^2 + 7/n^3 + 31/n^4 + 163/n^5 + 979/n^6 + 6556/n^7 + 48150/n^8 + 383219/n^9 + 3275121/n^10 + ...), for coefficients see A277396. - Vaclav Kotesovec, Oct 13 2016
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 2, 5, 15][n+1],
((2*(n^4-n^3-19*n^2+48*n-5))*a(n-1)
-(n+1)*(n^4+9*n^3-90*n^2+226*n-160)*a(n-2)
+(2*(4*n^5-18*n^4-23*n^3+266*n^2-523*n+330))*a(n-3)
-(4*(n-2))*(n^2-4*n+5)*(2*n-5)^2*a(n-4))/
((n+1)*(n^2-6*n+10)))
end:
seq(a(n), n=0..30);
MATHEMATICA
Table[Sum[CatalanNumber[k]*(n - k)!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 02 2016
STATUS
approved