Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 13 2016 03:57:03
%S 1,2,5,15,53,222,1120,6849,50111,427510,4142900,44693782,529276962,
%T 6813205468,94642629984,1410507388421,22445134308123,379776665469030,
%U 6808016435182620,128886547350655050,2569493300908367550,53805226930896987540,1180673761078007109840
%N Convolution of Catalan numbers and factorial numbers.
%H Alois P. Heinz, <a href="/A277175/b277175.txt">Table of n, a(n) for n = 0..449</a>
%F a(n) = Sum_{i=0..n} C(i) * (n-i)!.
%F a(n) ~ n! * (1 + 1/n + 2/n^2 + 7/n^3 + 31/n^4 + 163/n^5 + 979/n^6 + 6556/n^7 + 48150/n^8 + 383219/n^9 + 3275121/n^10 + ...), for coefficients see A277396. - _Vaclav Kotesovec_, Oct 13 2016
%p a:= proc(n) option remember; `if`(n<4, [1, 2, 5, 15][n+1],
%p ((2*(n^4-n^3-19*n^2+48*n-5))*a(n-1)
%p -(n+1)*(n^4+9*n^3-90*n^2+226*n-160)*a(n-2)
%p +(2*(4*n^5-18*n^4-23*n^3+266*n^2-523*n+330))*a(n-3)
%p -(4*(n-2))*(n^2-4*n+5)*(2*n-5)^2*a(n-4))/
%p ((n+1)*(n^2-6*n+10)))
%p end:
%p seq(a(n), n=0..30);
%t Table[Sum[CatalanNumber[k]*(n - k)!, {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Oct 13 2016 *)
%Y Cf. A000108, A000142, A277176, A277359, A277396.
%K nonn
%O 0,2
%A _Alois P. Heinz_, Oct 02 2016