login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073145 a(n) = -a(n-1) - a(n-2) + a(n-3), a(0)=3, a(1)=-1, a(2)=-1. 13
3, -1, -1, 5, -5, -1, 11, -15, 3, 23, -41, 21, 43, -105, 83, 65, -253, 271, 47, -571, 795, -177, -1189, 2161, -1149, -2201, 5511, -4459, -3253, 13223, -14429, -2047, 29699, -42081, 10335, 61445, -113861, 62751, 112555, -289167, 239363, 162359, -690889, 767893, 85355 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Previous name was: Sum of the determinants of the principal minors of 2nd order of n-th power of Tribomatrix: first row (1, 1, 0); second row (1, 0, 1); third row (1, 0, 0).

a(n) is related to the generalized Lucas numbers S(n). For instance 2S(n)=a(n)^2-a(2n).

a(n) is also the reflected (A074058) sequence of the generalized tribonacci sequence (A001644).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Mario Catalani, Polymatrix and Generalized Polynacci Numbers, arXiv:math/0210201 [math.CO], 2002.

Curtis Cooper, S. Miller, P. J. C. Moses, M. Sahin, and T. Thanatipanonda, On Identities of Ruggles, Horadam, Howard, and Young, Preprint 2016.

YĆ¼ksel Soykan, Summing Formulas For Generalized Tribonacci Numbers, arXiv:1910.03490 [math.GM], 2019.

Index entries for linear recurrences with constant coefficients, signature (-1,-1,1).

FORMULA

a(n) = -a(n-1) - a(n-2) + a(n-3), a(0)=3, a(1)=-1, a(2)=-1.

O.g.f.: (3 + 2*x + x^2)/(1 + x + x^2 - x^3).

a(n) = -T(n)^2 + 2*T(n-1)^2 + 3*T(n-2)^2 - 2*T(n)*T(n-1) + 2*T(n)*T(n-2) + 4*T(n-1)*T(n-2), where T(n) are tribonacci numbers (A000073).

a(n) = 3*A057597(n+2) + 2*A057597(n+1) + A057597(n). - R. J. Mathar, Jun 06 2011

From Peter Bala, Jun 29 2015: (Start)

a(n) = alpha^n + beta^n + gamma^n, where alpha, beta and gamma are the roots of 1 - x - x^2 - x^3 = 0.

x^2*exp( Sum_{n >= 1} a(n)*x^n/n ) = x^2 - x^3 + 2*x*5 - 3*x^6 + x^7 + ... is the o.g.f. for A057597. (End)

a(n) = A001644(-n) for all n in Z. - Michael Somos, Dec 17 2016

EXAMPLE

G.f. = 3 - x - x^2 + 5*x^3 - 5*x^4 - x^5 + 11*x^6 - 15*x^7 + 3*x^8 + 23*x^9 + ...

MATHEMATICA

A = Table[0, {3}, {3}]; A[[1, 1]] = 1; A[[1, 2]] = 1; A[[2, 1]] = 1; A[[2, 3]] = 1; A[[3, 1]] = 1; For[i = 1; t = IdentityMatrix[3], i < 50, i++, t = t.A; Print[t[[2, 2]]*t[[3, 3]] - t[[2, 3]]*t[[3, 2]] + t[[1, 1]]*t[[3, 3]] - t[[1, 3]]*t[[3, 1]] + t[[1, 1]]*t[[2, 2]] - t[[1, 2]]*t[[2, 1]]]]

LinearRecurrence[{-1, -1, 1}, {3, -1, -1}, 50] (* Vincenzo Librandi, Aug 17 2013 *)

PROG

(MAGMA) I:=[3, -1, -1]; [n le 3 select I[n] else -Self(n-1)-Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 17 2013

(PARI) {a(n) = if( n<0, polsym(1 + x+ x^2 - x^3, -n)[-n+1], polsym(1 - x - x^2 - x^3, n)[n+1])}; /* Michael Somos, Dec 17 2016 */

(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, -1, -1]^n*[3; -1; -1])[1, 1] \\ Charles R Greathouse IV, Feb 07 2017

(Sage) ((3+2*x+x^2)/(1+x+x^2-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019

CROSSREFS

Cf. A000073, A001644, A057597.

Sequence in context: A301531 A158418 A124925 * A245368 A239331 A145033

Adjacent sequences:  A073142 A073143 A073144 * A073146 A073147 A073148

KEYWORD

easy,sign

AUTHOR

Mario Catalani (mario.catalani(AT)unito.it), Jul 17 2002

EXTENSIONS

Better name by Joerg Arndt, Aug 17 2013

More terms from Vincenzo Librandi, Aug 17 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 16:43 EDT 2020. Contains 334704 sequences. (Running on oeis4.)