login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074058
Reflected tetranacci numbers A073817.
9
4, -1, -1, -1, 7, -6, -1, -1, 15, -19, 4, -1, 31, -53, 27, -6, 63, -137, 107, -39, 132, -337, 351, -185, 303, -806, 1039, -721, 791, -1915, 2884, -2481, 2303, -4621, 7683, -7846, 7087, -11545, 19987, -23375, 22020, -30177, 51519, -66737, 67415, -82374, 133215, -184993, 201567, -232163, 348804
OFFSET
0,1
COMMENTS
Also a(n) is the trace of A^(-n), where A is the 4 X 4 matrix ((1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)).
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, "Concrete Mathematics", Addison-Wesley, Reading, MA, 1998.
LINKS
A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.
FORMULA
a(n) = -a(n-1)-a(n-2)-a(n-3)+a(n-4), a(0)=4, a(1)=-1, a(2)=-1, a(3)=-1.
G.f.: (4+3x+2x^2+x^3)/(1+x+x^2+x^3-x^4).
From Peter Bala, Jan 19 2023: (Start)
a(n) = (-1)^n*A073937(n).
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. (End)
MATHEMATICA
CoefficientList[Series[(4+3*x+2*x^2+x^3)/(1+x+x^2+x^3-x^4), {x, 0, 1}], x]
PROG
(PARI) polsym(polrecip(1+x+x^2+x^3-x^4), 55) \\ Joerg Arndt, Jan 21 2023
CROSSREFS
Sequence in context: A360911 A363977 A073937 * A308552 A368333 A088440
KEYWORD
easy,sign
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 16 2002
STATUS
approved