login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073146
Triangle of numbers {a(n,k), n >= 0, 0 <= k <= n} defined by a(0,0)=1, a(n,0)=A000670(n), a(n,n)=A000629(n), a(n,k) = a(n,k-1) + a(n-1,k-1); a(n+1,0) = Sum_{k=0..n} a(n,k).
4
1, 1, 2, 3, 4, 6, 13, 16, 20, 26, 75, 88, 104, 124, 150, 541, 616, 704, 808, 932, 1082, 4683, 5224, 5840, 6544, 7352, 8284, 9366, 47293, 51976, 57200, 63040, 69584, 76936, 85220, 94586, 545835, 593128, 645104, 702304, 765344, 834928, 911864
OFFSET
0,3
COMMENTS
Related to preferential arrangements of n elements (A000670) and necklaces of sets of labeled beads (A000629).
Row sums are 1, 3, 13, 75, 541, ... (A000670 starting from A000670(1), the second "1"). - Gary W. Adamson, May 31 2005
LINKS
D. Dumont, Matrices d'Euler-Seidel, Sem. Loth. Comb. B05c (1981) 59-78.
FORMULA
From Vladeta Jovovic, Oct 15 2006: (Start)
Double-exponential generating function: Sum_{n, k} a(n-k, k) x^n/n! y^k/k! = exp(y)/(2-exp(x+y)).
a(n,k) = Sum_{i=n-k..n} binomial(k,i-n+k)*A000670(i). (End)
EXAMPLE
Triangle begins:
1;
1, 2;
3, 4, 6;
13, 16, 20, 26;
75, 88, 104, 124, 150;
541, 616, 704, 808, 932, 1082;
...
MATHEMATICA
Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1;
a[n_, k_] := Sum[Binomial[k, i-n+k] Fubini[i, 1], {i, n-k, n}];
Table[a[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 30 2016, after Vladeta Jovovic *)
CROSSREFS
Main diagonal is in A098696.
Sequence in context: A377121 A096988 A066463 * A038767 A363198 A188715
KEYWORD
easy,nonn,tabl
AUTHOR
Paul D. Hanna, Jul 18 2002
STATUS
approved