OFFSET
1,2
COMMENTS
If k is an odd term, 2*k is also a term due to the multiplicative nature of the totient function and their totients are equal.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
3, 4, and 6 are terms as their totients equal 2, which is the second refactorable number.
MAPLE
filter:= proc(n) local p;
p:= numtheory:-phi(n);
p mod numtheory:-tau(p) = 0
end proc:
select(filter, [$1..200]); # Robert Israel, Dec 12 2024
MATHEMATICA
Select[Range[200], Mod[EulerPhi[#], DivisorSigma[0, EulerPhi[#]]]==0&]
PROG
(PARI) for(n=1, 200, a=eulerphi(n); a%numdiv(a)==0&&print1(n", "))
(Python)
from sympy import divisor_sigma, totient
for i in range(1, 200):
if totient(i)%divisor_sigma(totient(i), 0)==0:
print(i, end=", ")
CROSSREFS
KEYWORD
nonn
AUTHOR
Waldemar Puszkarz, Oct 17 2024
STATUS
approved