Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Feb 06 2022 21:18:07
%S 1,1,2,3,4,6,13,16,20,26,75,88,104,124,150,541,616,704,808,932,1082,
%T 4683,5224,5840,6544,7352,8284,9366,47293,51976,57200,63040,69584,
%U 76936,85220,94586,545835,593128,645104,702304,765344,834928,911864
%N Triangle of numbers {a(n,k), n >= 0, 0 <= k <= n} defined by a(0,0)=1, a(n,0)=A000670(n), a(n,n)=A000629(n), a(n,k) = a(n,k-1) + a(n-1,k-1); a(n+1,0) = Sum_{k=0..n} a(n,k).
%C Related to preferential arrangements of n elements (A000670) and necklaces of sets of labeled beads (A000629).
%C Row sums are 1, 3, 13, 75, 541, ... (A000670 starting from A000670(1), the second "1"). - _Gary W. Adamson_, May 31 2005
%H D. Dumont, <a href="http://www.mat.univie.ac.at/~slc/opapers/s05dumont.html">Matrices d'Euler-Seidel</a>, Sem. Loth. Comb. B05c (1981) 59-78.
%F From _Vladeta Jovovic_, Oct 15 2006: (Start)
%F Double-exponential generating function: Sum_{n, k} a(n-k, k) x^n/n! y^k/k! = exp(y)/(2-exp(x+y)).
%F a(n,k) = Sum_{i=n-k..n} binomial(k,i-n+k)*A000670(i). (End)
%e Triangle begins:
%e 1;
%e 1, 2;
%e 3, 4, 6;
%e 13, 16, 20, 26;
%e 75, 88, 104, 124, 150;
%e 541, 616, 704, 808, 932, 1082;
%e ...
%t Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1;
%t a[n_, k_] := Sum[Binomial[k, i-n+k] Fubini[i, 1], {i, n-k, n}];
%t Table[a[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Mar 30 2016, after _Vladeta Jovovic_ *)
%Y Cf. A000670, A000629, A011971.
%Y Main diagonal is in A098696.
%K easy,nonn,tabl
%O 0,3
%A _Paul D. Hanna_, Jul 18 2002