login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174345
Triangle T(n, k) = (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(k-1) if floor(n/2) >= k, otherwise (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(n-k), read by rows.
1
1, 1, 1, 1, 6, 1, 1, 12, 12, 1, 1, 20, 80, 20, 1, 1, 30, 200, 200, 30, 1, 1, 42, 420, 1400, 420, 42, 1, 1, 56, 784, 3920, 3920, 784, 56, 1, 1, 72, 1344, 9408, 28224, 9408, 1344, 72, 1, 1, 90, 2160, 20160, 84672, 84672, 20160, 2160, 90, 1
OFFSET
1,5
FORMULA
T(n, k) = (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(k-1) if floor(n/2) >= k, otherwise (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(n-k).
T(n, n-k) = T(n, k).
From G. C. Greubel, Nov 28 2021: (Start)
T(n, n-1) = A180291(n), n > 1.
T(n, n-1) = 2*A000217(n-1), n > 2. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 12, 12, 1;
1, 20, 80, 20, 1;
1, 30, 200, 200, 30, 1;
1, 42, 420, 1400, 420, 42, 1;
1, 56, 784, 3920, 3920, 784, 56, 1;
1, 72, 1344, 9408, 28224, 9408, 1344, 72, 1;
1, 90, 2160, 20160, 84672, 84672, 20160, 2160, 90, 1;
MATHEMATICA
Table[(Binomial[n-1, k-1]*Binomial[n, k-1]/k)*If[Floor[n/2]>=k, 2^(k-1), 2^(n-k)], {n, 12}, {k, n}]//Flatten
PROG
(Sage)
def A174345(n, k):
b=binomial
if ((n//2)>k-1): return (1/(n+1))*b(n-1, k-1)*b(n+1, k)*2^(k-1)
else: return (1/(n+1))*b(n-1, k-1)*b(n+1, k)*2^(n-k)
flatten([[A174345(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Nov 28 2021
CROSSREFS
Sequence in context: A202868 A202877 A174124 * A174449 A174150 A202673
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Mar 16 2010
EXTENSIONS
Edited by G. C. Greubel, Nov 28 2021
STATUS
approved