login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202877
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202875; by antidiagonals.
2
1, -1, 1, -6, 1, 1, -11, 27, -1, 1, -17, 84, -97, 1, 1, -23, 177, -497, 311, -1, 1, -29, 306, -1405, 2546, -925, 1, 1, -35, 471, -3034, 9375, -11628, 2628, -1, 1, -41, 672, -5599, 24817, -55080, 48875, -7247, 1, 1, -47, 909, -9316, 54164
OFFSET
1,4
COMMENTS
Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).
LINKS
S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.
A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.
EXAMPLE
Top of the array:
1...-1
1...-6....1
1...-11...27...-1
1...-17...84...-97...1
MATHEMATICA
f[k_] := -1 + Fibonacci[k + 2]
U[n_] :=NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
F[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[F[n], x]
TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%]
TableForm[Table[c[n], {n, 1, 10}]]
CROSSREFS
Sequence in context: A295707 A146772 A202868 * A174124 A174345 A174449
KEYWORD
tabl,sign
AUTHOR
Clark Kimberling, Dec 26 2011
STATUS
approved