OFFSET
0,5
COMMENTS
Triangles of this class, depending upon q, are of the form T(n, k, q) = (q+1)*binomial(n, k)*(Pochhammer(q+1, n)/(Pochhammer(q+1, k)*Pochhammer(q+1, n-k))), with T(n, 0) = T(n, n) = 1, and have the row sums Sum_{k=0..n} T(n, k, q) = q*(q+1)*C_{n+q}/binomial(n+2*q, q-1) - 2*q + q*[n=0], where C_{n} are the Catalan numbers (A000108) and [] is the Iverson bracket. - G. C. Greubel, Feb 11 2021
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
FORMULA
Let c(n, q) = Product_{j=2..n} j*(j+q) for n > 2, otherwise 1, then the number triangle is given by T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)) for q = 1.
From G. C. Greubel, Feb 11 2021: (Start)
T(n, k, q) = (q+1)*binomial(n, k)*(Pochhammer(q+1, n)/(Pochhammer(q+1, k)*Pochhammer(q+1, n-k))), with T(n, 0) = T(n, n) = 1, and q = 1.
Sum_{k=0..n} T(n, k, 1) = 2*A000108(n+1) - 2 + [n=0]. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 12, 12, 1;
1, 20, 40, 20, 1;
1, 30, 100, 100, 30, 1;
1, 42, 210, 350, 210, 42, 1;
1, 56, 392, 980, 980, 392, 56, 1;
1, 72, 672, 2352, 3528, 2352, 672, 72, 1;
1, 90, 1080, 5040, 10584, 10584, 5040, 1080, 90, 1;
1, 110, 1650, 9900, 27720, 38808, 27720, 9900, 1650, 110, 1;
MATHEMATICA
(* First program *)
c[n_, q_]:= If[n<2, 1, Product[i*(i+q), {i, 2, n}]];
T[n_, m_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten
(* Second program *)
T[n_, k_, q_]:= If[k==0 || k==n, 1, (q+1)*Binomial[n, k]*(Pochhammer[q+1, n]/(Pochhammer[q+1, k]*Pochhammer[q+1, n-k]))];
Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
PROG
(Sage)
def T(n, k, q): return 1 if (k==0 or k==n) else (q+1)*binomial(n, k)*(rising_factorial(q+1, n)/(rising_factorial(q+1, k)*rising_factorial(q+1, n-k)))
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
(Magma)
c:= func< n, q | n lt 2 select 1 else (&*[j*(j+q): j in [2..n]]) >;
T:= func< n, k, q | c(n, q)/(c(k, q)*c(n-k, q)) >;
[T(n, k, 1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 09 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 11 2021
STATUS
approved