login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174126
Triangle T(n, k) = (n-k)^2 * binomial(n-1, k-1)^2 with T(n, 0) = T(n, n) = 1, read by rows.
2
1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 9, 36, 9, 1, 1, 16, 144, 144, 16, 1, 1, 25, 400, 900, 400, 25, 1, 1, 36, 900, 3600, 3600, 900, 36, 1, 1, 49, 1764, 11025, 19600, 11025, 1764, 49, 1, 1, 64, 3136, 28224, 78400, 78400, 28224, 3136, 64, 1, 1, 81, 5184, 63504, 254016, 396900, 254016, 63504, 5184, 81, 1
OFFSET
0,8
COMMENTS
This triangle sequence is part of a class of triangles defined by T(n, k, q) = (n-k)^q * binomial(n-1, k-1)^q with T(n, 0) = T(n, n) = 1 and have row sums Sum_{k=0..n} T(n, k, q) = 2 - [n=0] + Sum_{k=1..n-1} k^q * binomial(n-1, k)^q. - G. C. Greubel, Feb 10 2021
FORMULA
Let c(n) = Product_{i=2..n} (i-1)^2 for n > 2 otherwise 1. The number triangle is given by T(n, k) = c(n)/(c(k)*c(n-k)).
From G. C. Greubel, Feb 10 2021: (Start)
T(n, k) = (n-k)^2 * binomial(n-1, k-1)^2 with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} T(n, k) = 2 + A037966(n-1) - [n=0] = 2 + (n-1)^3*C_{n-2} - [n=0], where C_{n} are the Catalan numbers (A000108) and [] is the Iverson bracket. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 4, 4, 1;
1, 9, 36, 9, 1;
1, 16, 144, 144, 16, 1;
1, 25, 400, 900, 400, 25, 1;
1, 36, 900, 3600, 3600, 900, 36, 1;
1, 49, 1764, 11025, 19600, 11025, 1764, 49, 1;
1, 64, 3136, 28224, 78400, 78400, 28224, 3136, 64, 1;
1, 81, 5184, 63504, 254016, 396900, 254016, 63504, 5184, 81, 1;
MATHEMATICA
(* First program *)
c[n_]:= If[n<2, 1, Product[(i-1)^2, {i, 2, n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
(* Second program *)
T[n_, k_, q_]:= If[k==0 || k==n, 1, (n-k)^q*Binomial[n-1, k-1]^q];
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 10 2021 *)
PROG
(Sage)
def T(n, k, q): return 1 if (k==0 or k==n) else (n-k)^q*binomial(n-1, k-1)^q
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 10 2021
(Magma)
T:= func< n, k, q | k eq 0 or k eq n select 1 else (n-k)^q*Binomial(n-1, k-1)^q >;
[T(n, k, 2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 10 2021
CROSSREFS
Cf. A155865 (q=1), this sequence (q=2), A174127 (q=3).
Sequence in context: A375863 A108428 A373431 * A075613 A221837 A189150
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Mar 09 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 10 2021
STATUS
approved